forked from php-opencv/php-opencv-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_objects_by_dnn_mobilenet.php
42 lines (32 loc) · 1.94 KB
/
detect_objects_by_dnn_mobilenet.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
<?php
use CV\Scalar;
use function CV\{imread, cvtColor};
//$categories = explode("\n", file_get_contents('models/ssd_mobilenet_v1_coco/classes.txt'));
$categories = explode("\n", file_get_contents('models/ssdlite_mobilenet_v2_coco/classes.txt'));
$src = imread("images/objects.jpg"); // opencv loads image to matrix with BGR order
//var_export($src);
$blob = \CV\DNN\blobFromImage($src, 0.017, new \CV\Size(300,300), new Scalar(127.5, 127.5, 127.5), true, false); // convert image to 4 dimensions matrix
//var_export($blob);
//$net = \CV\DNN\readNetFromTensorflow('models/ssd_mobilenet_v2_coco/frozen_inference_graph.pb', 'models/ssd_mobilenet_v2_coco/ssd_mobilenet_v2_coco.pbtxt');
//$net = \CV\DNN\readNetFromTensorflow('models/ssd_mobilenet_v1_coco/frozen_inference_graph.pb', 'models/ssd_mobilenet_v1_coco/ssd_mobilenet_v1_coco.pbtxt');
$net = \CV\DNN\readNetFromTensorflow('models/ssdlite_mobilenet_v2_coco/frozen_inference_graph.pb', 'models/ssdlite_mobilenet_v2_coco/ssdlite_mobilenet_v2_coco.pbtxt');
$net->setInput($blob, "");
$r = $net->forward();
var_export($r);
$rectangles = [];
for ($i = 0; $i < $r->shape[2]; $i++) {
$classId = $r->atIdx([0,0,$i,1]);
$confidence = intval($r->atIdx([0,0,$i,2]) * 100);
if ($classId && $confidence > 30) {
$startX = $r->atIdx([0,0,$i,3]) * $src->cols;
$startY = $r->atIdx([0,0,$i,4]) * $src->rows;
$endX = $r->atIdx([0,0,$i,5]) * $src->cols;
$endY = $r->atIdx([0,0,$i,6]) * $src->rows;
$scalar = new Scalar(0, 0, 255);
\CV\rectangle($src, $startX, $startY, $endX, $endY, $scalar, 2);
$text = "{$categories[$classId]} $confidence%";
\CV\rectangle($src, $startX, $startY + 10, $startX + 20 * strlen($text), $startY - 30, new Scalar(255,255,255), -2);
\CV\putText($src, "{$categories[$classId]} $confidence%", new \CV\Point($startX, $startY - 2), 0, 1.5, new Scalar(), 2);
}
}
\CV\imwrite("results/_detect_objects_by_dnn_mobilenet.png", $src);