forked from IrisRainbowNeko/ML-Danbooru
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ac.py
365 lines (294 loc) · 15.4 KB
/
train_ac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
import argparse
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torch.optim import lr_scheduler
from ml_danbooru_tagger.helper_functions.helper_functions import mAP, CutoutPIL, ModelEma, \
add_weight_decay
from ml_danbooru_tagger.data.Danbooru import Danbooru
from ml_danbooru_tagger.data.utils import ResizeArea, WeakRandAugment
from ml_danbooru_tagger.models import create_model
from ml_danbooru_tagger.loss_functions.losses import AsymmetricLoss
from torch.cuda.amp import GradScaler, autocast
from torch.utils.data.distributed import DistributedSampler
import torch.distributed as dist
from ml_danbooru_tagger import dist as Adist
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.backends.cudnn as cudnn
import numpy as np
import random
from loguru import logger
import time
from accelerate import Accelerator
from accelerate.utils import set_seed
from accelerate import DistributedDataParallelKwargs
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
import warnings
warnings.filterwarnings('ignore')
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(description='PyTorch MS_COCO Training')
parser.add_argument('--imgs_train', type=str, default='/dataset/dzy/danbooru2021/px640')
parser.add_argument('--imgs_val', type=str, default='/dataset/dzy/danbooru2021/px640')
parser.add_argument('--label_train', type=str, default='/data3/dzy/datas/danbooru2021/danbooru2021/data_train.json')
parser.add_argument('--label_val', type=str, default='/data3/dzy/datas/danbooru2021/danbooru2021/data_val.json')
parser.add_argument('--arb', type=str, default=None)
parser.add_argument('--out_dir', type=str, default='models/')
parser.add_argument('--adam_8bit', action="store_true", default=False)
parser.add_argument('--log_step', type=int, default=20)
parser.add_argument('--save_step', type=int, default=2000)
parser.add_argument('--ema_step', default=1, type=int)
parser.add_argument('--log_dir', type=str, default='logs/')
parser.add_argument('--ckpt', default=None, type=str)
parser.add_argument('--start_epoch', default=0, type=int)
parser.add_argument('--start_step', default=0, type=int)
parser.add_argument('--epochs', default=10, type=int)
parser.add_argument('--ema', default=0.997, type=float)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--model_name', default='tresnet_l')
parser.add_argument('--model_path', default=None, type=str)
parser.add_argument('--num_classes', default=12547)
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('--image_size', default=448, type=int,
metavar='N', help='input image size (default: 448)')
parser.add_argument('--batch_size', default=56, type=int,
metavar='N', help='mini-batch size')
parser.add_argument('--gradient_accumulation_steps', default=1, type=int)
parser.add_argument('--max_grad_norm', default=1.0, type=float)
# ML-Decoder
parser.add_argument('--use_ml_decoder', default=1, type=int)
parser.add_argument('--num_of_groups', default=512, type=int) # full-decoding
parser.add_argument('--decoder_embedding', default=1024, type=int)
parser.add_argument('--zsl', default=0, type=int)
parser.add_argument('--num_layers_decoder', default=1, type=int)
parser.add_argument('--frelu', type=str2bool, default=True)
parser.add_argument('--xformers', type=str2bool, default=True)
parser.add_argument('--learn_query', type=str2bool, default=False)
class Trainer:
def __init__(self, args):
self.args=args
self.accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision='fp16',
step_scheduler_with_optimizer=False,
kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=True)],
)
args.device = self.accelerator.device
if self.accelerator.is_local_main_process:
os.makedirs(args.log_dir, exist_ok=True)
logger.add(os.path.join(args.log_dir, f'{time.strftime("%Y-%m-%d-%H-%M-%S")}.log'))
self.local_rank = int(os.environ.get("LOCAL_RANK", -1))
self.world_size = self.accelerator.num_processes
logger.info(f'rank: {self.local_rank}')
if self.accelerator.is_local_main_process:
logger.info(f'world_size: {self.world_size}')
logger.info(f'accumulation: {self.accelerator.gradient_accumulation_steps}')
os.makedirs(self.args.out_dir, exist_ok=True)
self.make_lr()
set_seed(41 + self.local_rank)
self.build_model()
self.build_data()
self.build_optimizer_scheduler()
self.model, self.optimizer, self.train_dataloader, self.scheduler = self.accelerator.prepare(
self.model, self.optimizer, self.train_loader, self.scheduler
)
self.weight_dtype = torch.float32
if self.accelerator.mixed_precision == "fp16":
self.weight_dtype = torch.float16
def make_lr(self):
self.args.lr = (self.args.batch_size / 56) * self.args.lr * self.world_size * self.accelerator.gradient_accumulation_steps
def build_model(self):
# Setup model
if self.accelerator.is_local_main_process:
logger.info('creating model {}...'.format(self.args.model_name))
self.model = create_model(self.args).cuda()
if self.accelerator.is_local_main_process:
logger.info('done')
logger.info(f'lr_max: {self.args.lr}')
self.ema = ModelEma(self.model, self.args.ema) # 0.9997^641=0.82
# load ckpt
if self.args.ckpt:
state = torch.load(self.args.ckpt, map_location='cpu')
if 'model' in state:
self.model.load_state_dict(state['model'], strict=True)
self.ema.module.load_state_dict(state['ema'], strict=True)
else:
self.model.load_state_dict(state, strict=True)
def build_data(self):
val_dataset = Danbooru(self.args.imgs_val,
self.args.label_val,
num_class=self.args.num_classes,
file_ext='webp',
transform=transforms.Compose([
transforms.Resize((self.args.image_size, self.args.image_size)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
]))
train_dataset = Danbooru(self.args.imgs_train,
self.args.label_train,
num_class=self.args.num_classes,
file_ext='webp',
transform=transforms.Compose([
ResizeArea(self.args.image_size ** 2) if self.args.arb else
transforms.Resize((self.args.image_size, self.args.image_size)),
#transforms.RandomHorizontalFlip(p=0.25),
WeakRandAugment(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
]))
if self.args.arb:
train_dataset.make_arb(self.args.arb, self.args.batch_size*self.world_size)
logger.info(f"len(val_dataset)): {len(val_dataset)}")
logger.info(f"len(train_dataset)): {len(train_dataset)}")
# Pytorch Data loader
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, num_replicas=self.world_size,
rank=self.local_rank, shuffle=not self.args.arb)
self.train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=self.args.batch_size,
num_workers=self.args.workers, sampler=train_sampler)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, num_replicas=self.world_size,
rank=self.local_rank, shuffle=False)
self.val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=self.args.batch_size,
num_workers=self.args.workers, sampler=val_sampler)
def get_parameter_group(self):
return add_weight_decay(self.model, self.args.weight_decay)
def build_optimizer_scheduler(self):
# set optimizer
lr = self.args.lr
self.criterion = AsymmetricLoss(gamma_neg=4, gamma_pos=0, clip=0.05, disable_torch_grad_focal_loss=True)
parameters = self.get_parameter_group()
if self.args.adam_8bit:
import bitsandbytes as bnb
self.optimizer = bnb.optim.AdamW8bit(params=parameters, lr=lr, weight_decay=0)
elif self.accelerator.state.deepspeed_plugin is not None:
from deepspeed.ops.adam import FusedAdam, DeepSpeedCPUAdam
self.optimizer = FusedAdam(params=parameters, lr=lr, weight_decay=0)
else:
self.optimizer = torch.optim.AdamW(params=parameters, lr=lr, weight_decay=0) # true wd, filter_bias_and_bn
self.steps_per_epoch = len(self.train_loader)
self.build_scheduler()
def build_scheduler(self):
self.scheduler = lr_scheduler.OneCycleLR(self.optimizer, max_lr=[x['lr'] for x in self.optimizer.state_dict()['param_groups']],
steps_per_epoch=self.steps_per_epoch, epochs=self.args.epochs, pct_start=0.2)
def train(self):
highest_mAP = 0
loss_sum = 0
self.start_step = self.args.start_step
self.scheduler.step(self.args.start_epoch * self.steps_per_epoch + self.start_step)
self.train_loader.dataset.set_skip_imgs(self.start_step * self.args.batch_size * self.world_size)
for epoch in range(self.args.start_epoch, self.args.epochs):
self.epoch=epoch
if self.args.arb:
self.train_loader.dataset.rest_arb(epoch)
self.model.train()
for i, (inputData, target) in enumerate(self.train_loader):
if self.start_step > 0:
if i>=self.start_step-1:
self.start_step = -1
self.train_loader.dataset.set_skip_imgs(0)
continue
loss = self.train_one_step(inputData, target, i)
if loss is None:
break
loss_sum+=loss
# store information
if self.accelerator.is_local_main_process:
if (i + 1) % self.args.log_step == 0:
logger.info('Epoch [{}/{}], Step [{}/{}], LR {:.1e}, Loss: {:.1f}'
.format(self.epoch, self.args.epochs, str(i + 1).zfill(3),
str(self.steps_per_epoch).zfill(3),
self.scheduler.get_last_lr()[0],
loss_sum / self.args.log_step))
self.log_train_hook(i, self.args.log_step)
loss_sum = 0
if (i + 1) % self.args.save_step == 0:
self.save_model(self.args.model_name, i)
if self.accelerator.is_local_main_process:
self.save_model(self.args.model_name, i)
self.model.eval()
mAP_score = self.validate_multi(self.model, self.ema)
if self.local_rank in [-1, 0]:
if mAP_score > highest_mAP:
highest_mAP = mAP_score
self.save_model(self.args.model_name, i)
logger.info('current_mAP = {:.2f}, highest_mAP = {:.2f}\n'.format(mAP_score, highest_mAP))
torch.cuda.synchronize()
def log_train_hook(self, step, log_step):
pass
def train_one_step(self, inputData, target, step):
with self.accelerator.accumulate(self.model):
inputData = inputData.to(self.accelerator.device, dtype=self.weight_dtype)
target = target.to(self.accelerator.device, dtype=int)
loss, out=self.cal_loss(inputData, target)
self.accelerator.backward(loss)
if self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm)
self.optimizer.step()
self.scheduler.step()
self.optimizer.zero_grad()
for x in out:
del x
del out
del inputData
del target
if step % self.args.ema_step ==0:
self.ema.update(self.model)
#if self.start_step + step >= self.steps_per_epoch:
# self.start_step = -1
# return None
return loss
def cal_loss(self, inputData, target):
output = self.model(inputData) # sigmoid will be done in loss !
loss = self.criterion(output, target)
return loss, (output,)
def save_model(self, model_name, step):
if self.local_rank == 0:
try:
torch.save({'model': self.model.module.state_dict(), 'ema': self.ema.module.state_dict()}, os.path.join(
self.args.out_dir, f'{model_name}-{self.epoch + 1}-{step + 1}.ckpt'))
except:
pass
def forward_val(self, model, input):
return torch.sigmoid(model(input)[0]['pred_logits'])
def validate_multi(self, model, ema_model):
logger.info("starting validation")
preds_regular = []
preds_ema = []
targets = []
with torch.no_grad():
with autocast():
for i, (input, target) in enumerate(self.val_loader):
input = input.to(self.accelerator.device, dtype=self.weight_dtype)
target = target.to(self.accelerator.device, dtype=int)
# compute output
output_regular = self.forward_val(model, input).cpu()
output_ema = self.forward_val(ema_model, input).cpu()
# for mAP calculation
preds_regular.append(output_regular.cpu())
preds_ema.append(output_ema.cpu())
targets.append(target.cpu())
targets_cat = torch.cat(targets)
preds_regular_cat = torch.cat(preds_regular)
preds_ema_cat = torch.cat(preds_ema)
if self.local_rank > -1:
targets_all = Adist.gather(targets_cat, dst=0)
preds_regular_all = Adist.gather(preds_regular_cat, dst=0)
preds_ema_all = Adist.gather(preds_ema_cat, dst=0)
if self.local_rank in [-1, 0]:
mAP_score_regular = mAP(torch.cat(targets_all).numpy(), torch.cat(preds_regular_all).numpy())
mAP_score_ema = mAP(torch.cat(targets_all).numpy(), torch.cat(preds_ema_all).numpy())
logger.info("mAP score regular {:.2f}, mAP score EMA {:.2f}".format(mAP_score_regular, mAP_score_ema))
return max(mAP_score_regular, mAP_score_ema)
else:
return 0
if __name__ == '__main__':
args = parser.parse_args()
trainer =Trainer(args)
trainer.train()