forked from AILab-CVC/GPT4Tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
llama.py
175 lines (149 loc) · 5.95 KB
/
llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""Wrapper around HuggingFace APIs."""
import torch
from typing import Any, Dict, List, Mapping, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utils import get_from_dict_or_env
from peft import PeftModel
from transformers import LlamaForCausalLM, LlamaTokenizer, GenerationConfig
DEFAULT_REPO_ID = "gpt2"
VALID_TASKS = ("text2text-generation", "text-generation")
class LlamaHuggingFace:
def __init__(self,
base_model,
lora_model,
task='text-generation',
device='cpu',
max_new_tokens=512,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=1):
self.task = task
self.device = device
self.temperature = temperature
self.max_new_tokens = max_new_tokens
self.top_p = top_p
self.top_k = top_k
self.num_beams = num_beams
self.tokenizer = LlamaTokenizer.from_pretrained(
base_model, use_fast=False)
model = LlamaForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.float16)
self.model = PeftModel.from_pretrained(
model,
lora_model,
torch_dtype=torch.float16)
self.model.to(device)
self.tokenizer.pad_token_id = 0
self.model.config.pad_token_id = 0
self.model.config.bos_token_id = 1
self.model.config.eos_token_id = 2
if device == "cpu":
self.model.float()
else:
self.model.half()
self.model.eval()
@torch.no_grad()
def __call__(self, inputs, params):
if inputs.endswith('Thought:'):
inputs = inputs[:-len('Thought:')]
inputs = inputs.replace('Observation:\n\nObservation:', 'Observation:')
inputs = inputs + '### ASSISTANT:\n'
input_ids = self.tokenizer(inputs, return_tensors="pt").to(self.device).input_ids
generation_config = GenerationConfig(
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
num_beams=self.num_beams)
generate_ids = self.model.generate(
input_ids=input_ids,
generation_config=generation_config,
max_new_tokens=self.max_new_tokens)
response = self.tokenizer.batch_decode(
generate_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False)
response = [res.replace('### ASSISTANT:\n', '') for res in response]
response = [{'generated_text': res} for res in response]
return response
class Llama(LLM, BaseModel):
"""Wrapper around LLAMA models.
"""
client: Any #: :meta private:
repo_id: str = DEFAULT_REPO_ID
"""Model name to use."""
task: Optional[str] = "text-generation"
"""Task to call the model with. Should be a task that returns `generated_text`."""
model_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
repo_id = values["repo_id"]
model_kwargs = values.get("model_kwargs")
client = LlamaHuggingFace(
base_model=model_kwargs.get("base_model"),
lora_model=model_kwargs.get("lora_model"),
task=values.get("task"),
device=model_kwargs.get("device"),
max_new_tokens=model_kwargs.get("max_new_tokens"),
temperature=model_kwargs.get("temperature"),
top_p=model_kwargs.get("top_p"),
top_k=model_kwargs.get("top_k"),
num_beams=model_kwargs.get("num_beams")
)
if client.task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {client.task}, "
f"currently only {VALID_TASKS} are supported"
)
values["client"] = client
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"repo_id": self.repo_id, "task": self.task},
**{"model_kwargs": _model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "huggingface_hub"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Call out to HuggingFace Hub's inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = hf("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
response = self.client(inputs=prompt, params=_model_kwargs)
if "error" in response:
raise ValueError(f"Error raised by inference API: {response['error']}")
if self.client.task == "text-generation":
# Text generation return includes the starter text.
text = response[0]["generated_text"][len(prompt) :]
elif self.client.task == "text2text-generation":
text = response[0]["generated_text"]
else:
raise ValueError(
f"Got invalid task {self.client.task}, "
f"currently only {VALID_TASKS} are supported"
)
if stop is not None:
# This is a bit hacky, but I can't figure out a better way to enforce
# stop tokens when making calls to huggingface_hub.
text = enforce_stop_tokens(text, stop)
return text