forked from AILab-CVC/GPT4Tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gpt4tools.py
1256 lines (1090 loc) · 61.9 KB
/
gpt4tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding: utf-8
import os
import gradio as gr
import random
import torch
import cv2
import re
import uuid
from PIL import Image, ImageDraw, ImageOps, ImageFont
import math
import numpy as np
import argparse
import inspect
import tempfile
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline
from diffusers import EulerAncestralDiscreteScheduler
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
from langchain.agents.initialize import initialize_agent
from langchain.agents.tools import Tool
from langchain.chains.conversation.memory import ConversationBufferMemory
# Grounding DINO
import groundingdino.datasets.transforms as T
from groundingdino.models import build_model
from groundingdino.util import box_ops
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
import cv2
import numpy as np
import matplotlib.pyplot as plt
import wget
from llama import Llama
GPT4TOOLS_PREFIX = """GPT4Tools can handle various text and visual tasks, such as answering questions and providing in-depth explanations and discussions. It generates human-like text and uses tools to indirectly understand images. When referring to images, GPT4Tools follows strict file name rules. To complete visual tasks, GPT4Tools uses tools and stays loyal to observation outputs. Users can provide new images to GPT4Tools with a description, but tools must be used for subsequent tasks.
TOOLS:
------
GPT4Tools has access to the following tools:"""
GPT4TOOLS_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format:
```
Thought: Do I need to use a tool? Yes
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
```
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
```
Thought: Do I need to use a tool? No
{ai_prefix}: [your response here]
```
"""
GPT4TOOLS_SUFFIX = """Follow file name rules and do not fake non-existent file names. Remember to provide the image file name loyally from the last tool observation.
Previous conversation:
{chat_history}
New input: {input}
GPT4Tools needs to use tools to observe images, not directly imagine them. Thoughts and observations in the conversation are only visible to GPT4Tools. When answering human questions, repeat important information. Let's think step by step.
{agent_scratchpad}"""
os.makedirs('image', exist_ok=True)
def seed_everything(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
return seed
def prompts(name, description):
def decorator(func):
func.name = name
func.description = description
return func
return decorator
def blend_gt2pt(old_image, new_image, sigma=0.15, steps=100):
new_size = new_image.size
old_size = old_image.size
easy_img = np.array(new_image)
gt_img_array = np.array(old_image)
pos_w = (new_size[0] - old_size[0]) // 2
pos_h = (new_size[1] - old_size[1]) // 2
kernel_h = cv2.getGaussianKernel(old_size[1], old_size[1] * sigma)
kernel_w = cv2.getGaussianKernel(old_size[0], old_size[0] * sigma)
kernel = np.multiply(kernel_h, np.transpose(kernel_w))
kernel[steps:-steps, steps:-steps] = 1
kernel[:steps, :steps] = kernel[:steps, :steps] / kernel[steps - 1, steps - 1]
kernel[:steps, -steps:] = kernel[:steps, -steps:] / kernel[steps - 1, -(steps)]
kernel[-steps:, :steps] = kernel[-steps:, :steps] / kernel[-steps, steps - 1]
kernel[-steps:, -steps:] = kernel[-steps:, -steps:] / kernel[-steps, -steps]
kernel = np.expand_dims(kernel, 2)
kernel = np.repeat(kernel, 3, 2)
weight = np.linspace(0, 1, steps)
top = np.expand_dims(weight, 1)
top = np.repeat(top, old_size[0] - 2 * steps, 1)
top = np.expand_dims(top, 2)
top = np.repeat(top, 3, 2)
weight = np.linspace(1, 0, steps)
down = np.expand_dims(weight, 1)
down = np.repeat(down, old_size[0] - 2 * steps, 1)
down = np.expand_dims(down, 2)
down = np.repeat(down, 3, 2)
weight = np.linspace(0, 1, steps)
left = np.expand_dims(weight, 0)
left = np.repeat(left, old_size[1] - 2 * steps, 0)
left = np.expand_dims(left, 2)
left = np.repeat(left, 3, 2)
weight = np.linspace(1, 0, steps)
right = np.expand_dims(weight, 0)
right = np.repeat(right, old_size[1] - 2 * steps, 0)
right = np.expand_dims(right, 2)
right = np.repeat(right, 3, 2)
kernel[:steps, steps:-steps] = top
kernel[-steps:, steps:-steps] = down
kernel[steps:-steps, :steps] = left
kernel[steps:-steps, -steps:] = right
pt_gt_img = easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]]
gaussian_gt_img = kernel * gt_img_array + (1 - kernel) * pt_gt_img # gt img with blur img
gaussian_gt_img = gaussian_gt_img.astype(np.int64)
easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]] = gaussian_gt_img
gaussian_img = Image.fromarray(easy_img)
return gaussian_img
def cut_dialogue_history(history_memory, keep_last_n_paragraphs=1):
if history_memory is None or len(history_memory) == 0:
return history_memory
paragraphs = history_memory.split('Human:')
if len(paragraphs) <= keep_last_n_paragraphs:
return history_memory
return 'Human:' + 'Human:'.join(paragraphs[-1:])
def get_new_image_name(org_img_name, func_name="update"):
head_tail = os.path.split(org_img_name)
head = head_tail[0]
tail = head_tail[1]
new_file_name = f'{str(uuid.uuid4())[:8]}.png'
return os.path.join(head, new_file_name)
class InstructPix2Pix:
def __init__(self, device):
print(f"Initializing InstructPix2Pix to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix",
safety_checker=None,
torch_dtype=self.torch_dtype).to(device)
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
@prompts(name="Instruct Image Using Text",
description="useful when you want to the style of the image to be like the text. "
"like: make it look like a painting. or make it like a robot. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the text. ")
def inference(self, inputs):
"""Change style of image."""
print("===>Starting InstructPix2Pix Inference")
image_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
original_image = Image.open(image_path)
image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0]
updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
image.save(updated_image_path)
print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Text2Image:
def __init__(self, device):
print(f"Initializing Text2Image to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",
torch_dtype=self.torch_dtype)
self.pipe.to(device)
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image From User Input Text",
description="useful when you want to generate an image from a user input text and save it to a file. "
"like: generate an image of an object or something, or generate an image that includes some objects. "
"The input to this tool should be a string, representing the text used to generate image. ")
def inference(self, text):
image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png")
prompt = text + ', ' + self.a_prompt
image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0]
image.save(image_filename)
print(
f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}")
return image_filename
class ImageCaptioning:
def __init__(self, device):
print(f"Initializing ImageCaptioning to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
self.model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype).to(self.device)
@prompts(name="Get Photo Description",
description="useful when you want to know what is inside the photo. receives image_path as input. "
"The input to this tool should be a string, representing the image_path. ")
def inference(self, image_path):
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype)
out = self.model.generate(**inputs)
captions = self.processor.decode(out[0], skip_special_tokens=True)
print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}")
return captions
class Image2Canny:
def __init__(self, device):
print("Initializing Image2Canny")
self.low_threshold = 100
self.high_threshold = 200
@prompts(name="Edge Detection On Image",
description="useful when you want to detect the edge of the image. "
"like: detect the edges of this image, or canny detection on image, "
"or perform edge detection on this image, or detect the canny image of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
image = np.array(image)
canny = cv2.Canny(image, self.low_threshold, self.high_threshold)
canny = canny[:, :, None]
canny = np.concatenate([canny, canny, canny], axis=2)
canny = Image.fromarray(canny)
updated_image_path = get_new_image_name(inputs, func_name="edge")
canny.save(updated_image_path)
print(f"\nProcessed Image2Canny, Input Image: {inputs}, Output Text: {updated_image_path}")
return updated_image_path
class CannyText2Image:
def __init__(self, device):
print(f"Initializing CannyText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Canny Image",
description="useful when you want to generate a new real image from both the user description and a canny image."
" like: generate a real image of a object or something from this canny image,"
" or generate a new real image of a object or something from this edge image. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description. ")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="canny2image")
image.save(updated_image_path)
print(f"\nProcessed CannyText2Image, Input Canny: {image_path}, Input Text: {instruct_text}, "
f"Output Text: {updated_image_path}")
return updated_image_path
class Image2Line:
def __init__(self, device):
print("Initializing Image2Line")
self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Line Detection On Image",
description="useful when you want to detect the straight line of the image. "
"like: detect the straight lines of this image, or straight line detection on image, "
"or perform straight line detection on this image, or detect the straight line image of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
mlsd = self.detector(image)
updated_image_path = get_new_image_name(inputs, func_name="line-of")
mlsd.save(updated_image_path)
print(f"\nProcessed Image2Line, Input Image: {inputs}, Output Line: {updated_image_path}")
return updated_image_path
class LineText2Image:
def __init__(self, device):
print(f"Initializing LineText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Line Image",
description="useful when you want to generate a new real image from both the user description "
"and a straight line image. "
"like: generate a real image of a object or something from this straight line image, "
"or generate a new real image of a object or something from this straight lines. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description. ")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="line2image")
image.save(updated_image_path)
print(f"\nProcessed LineText2Image, Input Line: {image_path}, Input Text: {instruct_text}, "
f"Output Text: {updated_image_path}")
return updated_image_path
class Image2Hed:
def __init__(self, device):
print("Initializing Image2Hed")
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Hed Detection On Image",
description="useful when you want to detect the soft hed boundary of the image. "
"like: detect the soft hed boundary of this image, or hed boundary detection on image, "
"or perform hed boundary detection on this image, or detect soft hed boundary image of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
hed = self.detector(image)
updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
hed.save(updated_image_path)
print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {updated_image_path}")
return updated_image_path
class HedText2Image:
def __init__(self, device):
print(f"Initializing HedText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Soft Hed Boundary Image",
description="useful when you want to generate a new real image from both the user description "
"and a soft hed boundary image. "
"like: generate a real image of a object or something from this soft hed boundary image, "
"or generate a new real image of a object or something from this hed boundary. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="hed2image")
image.save(updated_image_path)
print(f"\nProcessed HedText2Image, Input Hed: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Scribble:
def __init__(self, device):
print("Initializing Image2Scribble")
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Sketch Detection On Image",
description="useful when you want to generate a scribble of the image. "
"like: generate a scribble of this image, or generate a sketch from this image, "
"detect the sketch from this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
scribble = self.detector(image, scribble=True)
updated_image_path = get_new_image_name(inputs, func_name="scribble")
scribble.save(updated_image_path)
print(f"\nProcessed Image2Scribble, Input Image: {inputs}, Output Scribble: {updated_image_path}")
return updated_image_path
class ScribbleText2Image:
def __init__(self, device):
print(f"Initializing ScribbleText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Sketch Image",
description="useful when you want to generate a new real image from both the user description and "
"a scribble image or a sketch image. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
image.save(updated_image_path)
print(f"\nProcessed ScribbleText2Image, Input Scribble: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Pose:
def __init__(self, device):
print("Initializing Image2Pose")
self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Pose Detection On Image",
description="useful when you want to detect the human pose of the image. "
"like: generate human poses of this image, or generate a pose image from this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
pose = self.detector(image)
updated_image_path = get_new_image_name(inputs, func_name="human-pose")
pose.save(updated_image_path)
print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}")
return updated_image_path
class PoseText2Image:
def __init__(self, device):
print(f"Initializing PoseText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.num_inference_steps = 20
self.seed = -1
self.unconditional_guidance_scale = 9.0
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Pose Image",
description="useful when you want to generate a new real image from both the user description "
"and a human pose image. "
"like: generate a real image of a human from this human pose image, "
"or generate a new real image of a human from this pose. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="pose2image")
image.save(updated_image_path)
print(f"\nProcessed PoseText2Image, Input Pose: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class SegText2Image:
def __init__(self, device):
print(f"Initializing SegText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Segmentations",
description="useful when you want to generate a new real image from both the user description and segmentations. "
"like: generate a real image of a object or something from this segmentation image, "
"or generate a new real image of a object or something from these segmentations. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="segment2image")
image.save(updated_image_path)
print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Depth:
def __init__(self, device):
print("Initializing Image2Depth")
self.depth_estimator = pipeline('depth-estimation')
@prompts(name="Predict Depth On Image",
description="useful when you want to detect depth of the image. like: generate the depth from this image, "
"or detect the depth map on this image, or predict the depth for this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
depth = self.depth_estimator(image)['depth']
depth = np.array(depth)
depth = depth[:, :, None]
depth = np.concatenate([depth, depth, depth], axis=2)
depth = Image.fromarray(depth)
updated_image_path = get_new_image_name(inputs, func_name="depth")
depth.save(updated_image_path)
print(f"\nProcessed Image2Depth, Input Image: {inputs}, Output Depth: {updated_image_path}")
return updated_image_path
class DepthText2Image:
def __init__(self, device):
print(f"Initializing DepthText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained(
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Depth",
description="useful when you want to generate a new real image from both the user description and depth image. "
"like: generate a real image of a object or something from this depth image, "
"or generate a new real image of a object or something from the depth map. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="depth2image")
image.save(updated_image_path)
print(f"\nProcessed DepthText2Image, Input Depth: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Normal:
def __init__(self, device):
print("Initializing Image2Normal")
self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas")
self.bg_threhold = 0.4
@prompts(name="Predict Normal Map On Image",
description="useful when you want to detect norm map of the image. "
"like: generate normal map from this image, or predict normal map of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
original_size = image.size
image = self.depth_estimator(image)['predicted_depth'][0]
image = image.numpy()
image_depth = image.copy()
image_depth -= np.min(image_depth)
image_depth /= np.max(image_depth)
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
x[image_depth < self.bg_threhold] = 0
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
y[image_depth < self.bg_threhold] = 0
z = np.ones_like(x) * np.pi * 2.0
image = np.stack([x, y, z], axis=2)
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
image = image.resize(original_size)
updated_image_path = get_new_image_name(inputs, func_name="normal-map")
image.save(updated_image_path)
print(f"\nProcessed Image2Normal, Input Image: {inputs}, Output Depth: {updated_image_path}")
return updated_image_path
class NormalText2Image:
def __init__(self, device):
print(f"Initializing NormalText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained(
"fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Normal Map",
description="useful when you want to generate a new real image from both the user description and normal map. "
"like: generate a real image of a object or something from this normal map, "
"or generate a new real image of a object or something from the normal map. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="normal2image")
image.save(updated_image_path)
print(f"\nProcessed NormalText2Image, Input Normal: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class VisualQuestionAnswering:
def __init__(self, device):
print(f"Initializing VisualQuestionAnswering to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.device = device
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
self.model = BlipForQuestionAnswering.from_pretrained(
"Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype).to(self.device)
@prompts(name="Answer Question About The Image",
description="useful when you need an answer for a question based on an image. "
"like: what is the background color of the last image, how many cats in this figure, what is in this figure. "
"The input to this tool should be a comma separated string of two, representing the image_path and the question")
def inference(self, inputs):
image_path, question = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
raw_image = Image.open(image_path).convert('RGB')
inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device, self.torch_dtype)
out = self.model.generate(**inputs)
answer = self.processor.decode(out[0], skip_special_tokens=True)
print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, "
f"Output Answer: {answer}")
return answer
class Segmenting:
def __init__(self, device):
print(f"Inintializing Segmentation to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.model_checkpoint_path = os.path.join("checkpoints","sam")
self.download_parameters()
self.sam = build_sam(checkpoint=self.model_checkpoint_path).to(device)
self.sam_predictor = SamPredictor(self.sam)
self.mask_generator = SamAutomaticMaskGenerator(self.sam)
def download_parameters(self):
url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
if not os.path.exists(self.model_checkpoint_path):
wget.download(url,out=self.model_checkpoint_path)
def show_mask(self, mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([1])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 1])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(self, box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
ax.text(x0, y0, label)
def get_mask_with_boxes(self, image_pil, image, boxes_filt):
size = image_pil.size
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(self.device)
masks, _, _ = self.sam_predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes.to(self.device),
multimask_output = False,
)
return masks
def segment_image_with_boxes(self, image_pil, image_path, boxes_filt, pred_phrases):
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
self.sam_predictor.set_image(image)
masks = self.get_mask_with_boxes(image_pil, image, boxes_filt)
# draw output image
plt.figure(figsize=(10, 10))
plt.imshow(image)
for mask in masks:
self.show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
updated_image_path = get_new_image_name(image_path, func_name="segmentation")
plt.axis('off')
plt.savefig(
updated_image_path,
bbox_inches="tight", dpi=300, pad_inches=0.0
)
return updated_image_path
@prompts(name="Segment the Image",
description="useful when you want to segment all the part of the image, but not segment a certain object."
"like: segment all the object in this image, or generate segmentations on this image, "
"or segment the image,"
"or perform segmentation on this image, "
"or segment all the object in this image."
"The input to this tool should be a string, representing the image_path")
def inference_all(self,image_path):
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
masks = self.mask_generator.generate(image)
plt.figure(figsize=(20,20))
plt.imshow(image)
if len(masks) == 0:
return
sorted_anns = sorted(masks, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
polygons = []
color = []
for ann in sorted_anns:
m = ann['segmentation']
img = np.ones((m.shape[0], m.shape[1], 3))
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
img[:,:,i] = color_mask[i]
ax.imshow(np.dstack((img, m)))
updated_image_path = get_new_image_name(image_path, func_name="segment-image")
plt.axis('off')
plt.savefig(
updated_image_path,
bbox_inches="tight", dpi=300, pad_inches=0.0
)
return updated_image_path
class Text2Box:
def __init__(self, device):
print(f"Initializing ObjectDetection to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.model_checkpoint_path = os.path.join("checkpoints","groundingdino")
self.model_config_path = os.path.join("checkpoints","grounding_config.py")
self.download_parameters()
self.box_threshold = 0.3
self.text_threshold = 0.25
self.grounding = (self.load_model()).to(self.device)
def download_parameters(self):
url = "https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth"
if not os.path.exists(self.model_checkpoint_path):
wget.download(url,out=self.model_checkpoint_path)
config_url = "https://raw.githubusercontent.com/IDEA-Research/GroundingDINO/main/groundingdino/config/GroundingDINO_SwinT_OGC.py"
if not os.path.exists(self.model_config_path):
wget.download(config_url,out=self.model_config_path)
def load_image(self,image_path):
# load image
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([512], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def load_model(self):
args = SLConfig.fromfile(self.model_config_path)
args.device = self.device
model = build_model(args)
checkpoint = torch.load(self.model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def get_grounding_boxes(self, image, caption, with_logits=True):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
image = image.to(self.device)
with torch.no_grad():
outputs = self.grounding(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > self.box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = self.grounding.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > self.text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
return boxes_filt, pred_phrases
def plot_boxes_to_image(self, image_pil, tgt):
H, W = tgt["size"]
boxes = tgt["boxes"]
labels = tgt["labels"]
assert len(boxes) == len(labels), "boxes and labels must have same length"
draw = ImageDraw.Draw(image_pil)
mask = Image.new("L", image_pil.size, 0)
mask_draw = ImageDraw.Draw(mask)
# draw boxes and masks
for box, label in zip(boxes, labels):
# from 0..1 to 0..W, 0..H
box = box * torch.Tensor([W, H, W, H])
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
# draw.text((x0, y0), str(label), fill=color)
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
# bbox = draw.textbbox((x0, y0), str(label))
draw.rectangle(bbox, fill=color)
draw.text((x0, y0), str(label), fill="white")
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=2)
return image_pil, mask
@prompts(name="Detect the Give Object",
description="useful when you only want to detect or find out given objects in the picture"
"The input to this tool should be a comma separated string of two, "
"representing the image_path, the text description of the object to be found")
def inference(self, inputs):
image_path, det_prompt = inputs.split(",")
print(f"image_path={image_path}, text_prompt={det_prompt}")
image_pil, image = self.load_image(image_path)
boxes_filt, pred_phrases = self.get_grounding_boxes(image, det_prompt)
size = image_pil.size
pred_dict = {
"boxes": boxes_filt,
"size": [size[1], size[0]], # H,W
"labels": pred_phrases,}
image_with_box = self.plot_boxes_to_image(image_pil, pred_dict)[0]
updated_image_path = get_new_image_name(image_path, func_name="detect-something")
updated_image = image_with_box.resize(size)
updated_image.save(updated_image_path)
print(
f"\nProcessed ObejectDetecting, Input Image: {image_path}, Object to be Detect {det_prompt}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Inpainting:
def __init__(self, device):
self.device = device
self.revision = 'fp16' if 'cuda' in self.device else None
self.torch_dtype = torch.float16 if 'cuda' in self.device else torch.float32
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device)
def __call__(self, prompt, original_image, mask_image):
update_image = self.inpaint(prompt=prompt, image=original_image.resize((512, 512)),
mask_image=mask_image.resize((512, 512))).images[0]
return update_image