-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday20.R
319 lines (259 loc) · 9.62 KB
/
day20.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# --- Day 20: Donut Maze ---
library(tidyverse)
library(datastructures)
library(igraph)
dt <- read_lines("day20.txt")
maze_size <- c(str_length(dt[[1]]), length(dt))
# figure out the outer size of the maze: there is a 2 character padding all
# around for the letters
maze_outer <- maze_size - 4
# find the maze middle size, count the number of # and . on the line
# first, find out the mid point
maze_middle <- ceiling(maze_size / 2)
# then, work out how wide the left and right bit of the maze is, then the top
# and bottom bit of the maze is (at the midpoint)
maze_middle <- c(
map_chr(dt, str_sub, maze_middle[[1]], maze_middle[[1]]) %>%
paste(collapse = "") %>% {
c(str_sub(., 1, maze_middle[[2]]),
str_sub(., maze_middle[[2]]))
},
dt[[maze_middle[[2]]]] %>% {
c(str_sub(., 1, maze_middle[[1]]),
str_sub(., maze_middle[[1]]))
}
) %>%
str_extract_all("\\.|#") %>%
map_dbl(length)
# now, update maze_middle to be the square inside
maze_middle <- (maze_middle + c(3, +2-maze_size[[1]],
3, +2-maze_size[[2]]))*c(1,-1,1,-1)
# now, build a list of the named points
get_portals <- function(maze) {
portals <- list()
# row loop
for (i in maze_middle[[3]]:maze_middle[[4]]) {
# left out
if (maze[i, 1] != " ") {
v <- paste0(paste(maze[i, 1:2], collapse = ""), "o")
portals[[v]] <- c(portals[[v]], 3, i)
maze[i, 2] <- v
}
# right out
if (maze[i, maze_size[[1]]] != " ") {
v <- paste0(paste(maze[i, maze_size[[1]]-c(1,0)], collapse = ""), "o")
portals[[v]] <- c(portals[[v]], maze_size[[1]]-2, i)
maze[i, maze_size[[1]]-1] <- v
}
# left middle
if (maze[i, maze_middle[[1]]] != " ") {
v <- paste0(paste(maze[i, maze_middle[[1]] + c(0,1)], collapse = ""), "i")
portals[[v]] <- c(portals[[v]], maze_middle[[1]]-1, i)
maze[i, maze_middle[[1]]] <- v
}
# right middle
if (maze[i, maze_middle[[2]]] != " ") {
v <- paste0(paste(maze[i, maze_middle[[2]] - c(1,0)], collapse = ""), "i")
portals[[v]] <- c(portals[[v]], maze_middle[[2]]+1, i)
maze[i, maze_middle[[2]]] <- v
}
}
# column loop
for (i in maze_middle[[1]]:maze_middle[[2]]) {
# top out
if (maze[1, i] != " ") {
v <- paste0(paste(maze[1:2, i], collapse = ""), "o")
portals[[v]] <- c(portals[[v]], i, 3)
maze[2, i] <- v
}
# bottom out
if (maze[maze_size[[2]], i] != " ") {
v <- paste0(paste(maze[maze_size[[2]]-c(1,0), i], collapse = ""), "o")
portals[[v]] <- c(portals[[v]], i, maze_size[[2]]-2)
maze[maze_size[[2]]-1, i] <- v
}
# middle top
if (maze[maze_middle[[3]], i] != " ") {
v <- paste0(paste(maze[maze_middle[[3]] + c(0,1), i], collapse = ""), "i")
portals[[v]] <- c(portals[[v]], i, maze_middle[[3]]-1)
maze[maze_middle[[3]], i] <- v
}
# middle bottom
if (maze[maze_middle[[4]], i] != " ") {
v <- paste0(paste(maze[maze_middle[[4]] - c(1,0), i], collapse = ""), "i")
portals[[v]] <- c(portals[[v]], i, maze_middle[[4]]+1)
maze[maze_middle[[4]], i] <- v
}
}
list(maze = maze, portals = portals)
}
# create a graph data frame from the maze and portals
build_graph <- function(maze, portals) {
# quickly sort the portals
portals <- portals[sort(names(portals))]
q <- queue()
directions = list(
L = c(-1, 0),
R = c( 1, 0),
U = c( 0, -1),
D = c( 0, 1)
)
nodes <- list()
intersections <- 0
while (length(portals) > 0) {
start <- names(portals)[[1]]
insert(q, list(list(x = portals[[start]][[1]],
y = portals[[start]][[2]],
f = start,
d = 0)))
portals[[start]] <- NULL
# the initial point wont work in the loop, so let's sort it
nodes[[start]] <- list(from = "*", to = start, weight = 0)
while (size(q) > 0) {
n <- pop(q)[[1]]
from <- n$f
v <- maze[n$y, n$x]
# mark as visited
maze[n$y, n$x] <- "#"
if (v != ".") {
nodes[[v]] <- list(from = from, to = v, weight = n$d-1)
portals[[v]] <- NULL
from <- n$v
}
moves <- map(directions, ~maze[n$y + .x[[2]], n$x + .x[[1]]]) %>%
keep(~.x == "." || !is.null(portals[[.x]]))
if (length(moves) == 0) {
# dead end
} else if (length(moves) == 1) {
# one single move
m <- names(moves)[[1]]
d <- directions[[m]]
nx <- n$x + d[[1]]
ny <- n$y + d[[2]]
insert(q, list(list(x = nx,
y = ny,
f = from,
d = n$d + 1)))
} else {
# multiple moves, build an intersection
intersections <- intersections + 1
v <- paste0("ix", str_pad(intersections, 3, pad = "0"))
nodes <- c(nodes, list(list(from = from, to = v, weight = n$d)))
from <- v
for (m in names(moves)) {
d <- directions[[m]]
nx <- n$x + d[[1]]
ny <- n$y + d[[2]]
insert(q, list(list(x = nx,
y = ny,
f = from,
d = 1)))
}
}
}
}
# convert to a tibble
bind_rows(nodes)
}
simplify_graph <- function(g) {
# remove any intersection that results in a dead-end. Recursively call this
# until we have no intersections with degree 1 (i.e. only one way in and out)
repeat {
dv <- V(g)[degree(g) == 1]$name
dv <- dv[str_length(dv) == 5]
if (length(dv) == 0) break
g <- delete_vertices(g, dv)
}
cmps <- components(g)$membership %>%
map_dfr(~tibble(c = .x), .id = "v") %>%
group_nest(c, .key = "v") %>%
mutate_at(vars(v), map, pull, quo(v)) %>%
pull(v) %>%
map(~.x[str_length(.x) == 3])
res <- list()
for (cmp in cmps) {
for (i in 1:(length(cmp)-1)) {
for (j in (i+1):length(cmp)) {
d <- distances(g, cmp[[i]], cmp[[j]])
res[[length(res)+1]] <- list(from = cmp[[i]],
to = cmp[[j]],
weight = d[[1]])
}
}
}
bind_rows(res) %>%
graph_from_data_frame(FALSE)
}
gp <- get_portals(str_split(dt, "", simplify = TRUE))
g <- build_graph(gp$maze, gp$portals) %>%
filter(from != "*") %>%
graph_from_data_frame(FALSE) %>%
simplify_graph()
part_one <- function(g) {
# find all of the portals, and directly connect them together with an edge
# weight of 1
portal_edges <- V(g)$name %>%
# get rid of the start and end portals
subset(!. %in% c("AAo", "ZZo")) %>%
# arrange them alphabetically, so each pair of portals are adjacent
sort()
# add an edge between portal pairs with a weight of 1: it takes one step to
# move throught the portals
g <- add_edges(g, portal_edges, weight = 1)
# find the distance from the start portal to the end portal
distances(g, "AAo", "ZZo")[[1]]
}
part_two <- function(g, depth = 200) {
# create a copy of the graph: we are going to build ng up layer by layer,
# connecting the inner portals to the outer portals
ng <- g
# initial level
# rename vertices to include what depth they take us to
for(v in V(ng)$name) {
a <- str_sub(v, 1, 2)
b <- ifelse(str_sub(v, -1) == "i", 2, 0)
vertex_attr(ng, "name", v) <- paste0(a, b)
}
# for each subsequent depth, use the following copy of the original graph
# remove AA/ZZ, these only exist on level 0
dg <- delete.vertices(g, c("AAo", "ZZo"))
# increase each weight by 1 to account for the step through the portal. We do
# this because we are going to directly connect the portals from now on, so
# there won't be a "step" between portals
edge_attr(dg, "weight_x") <- edge_attr(dg, "weight") + 1
# delete the weight edge attribute: when we union two graphs together it
# needs unique edge attribute names, otherwise it can't properly merge
dg <- delete_edge_attr(dg, "weight")
# now loop through the rest of the levels we want to create
for (i in 2:depth) {
# create a copy of the dg graph for this level
dgx <- dg
# rename in vertices to depth+1, out vertices to depth-1
for(v in V(dgx)$name) {
a <- str_sub(v, 1, 2)
b <- ifelse(str_sub(v, -1) == "i", i+1, i-1)
vertex_attr(dgx, "name", v) <- paste0(a, b)
}
# combine the graphs ng and dgx
ng <- graph.union(ng, dgx)
# recalculate the edge weights: the items from ng will have values for the
# "weight" attribute, but NA's for "weight_x", and vice-versa for dgx. We
# need to replace NA's with 0's.
vw1 <- edge_attr(ng, "weight" ) %>% replace_na(0)
vw2 <- edge_attr(ng, "weight_x") %>% replace_na(0)
# update the edge weights, and delete the extra weight attibute
edge_attr(ng, "weight") <- vw1+vw2
ng <- delete_edge_attr(ng, "weight_x")
}
# use Dijkstra's to calculate the distance from the start portal to the end
# we need to add one extra step through to ZZ
distances(ng, "AA0", "ZZ0")[[1]] + 1
}
part_one(g)
# Part 2 should be solved with an infinite graph, but R is just too slow. A good
# example of this working in Python is provided by the following post on Reddit:
# https://www.reddit.com/r/adventofcode/comments/ed5ei2/2019_day_20_solutions/fbm3gfx/
# Instead, I solve this by copying the graph n times, and then connecting each
# layer of the graph by the portals. I rename the portals at each level so they
# connect, then use igraph to calculate the distance (using Dijkstra's)
part_two(g, depth = 51)