-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathElementFilter.py
56 lines (42 loc) · 2.41 KB
/
ElementFilter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import abc
from abc import ABC
import pandas as pd
from datasets.Dataset import Dataset
from precalculating.TraceLinkDataStructure import ElementLevelTraceLinkDataStructure
from utility import FileUtil
class ElementFilter(ABC):
def filter(self, trace_link_data_structure: ElementLevelTraceLinkDataStructure, dataset: Dataset):
if dataset.classification_file_path() is not None and FileUtil.file_exists(dataset.classification_file_path()):
df = pd.read_csv(dataset.classification_file_path(), delimiter=',', encoding='utf8', header=0,
names=['file', 'ID', 'line', 'functional', 'Function', 'Behavior', 'Data', 'OnlyF', 'F',
'OnlyQ', 'Q', 'UserRelated'])
for file in df.file.unique():
idxs = df.index[df['file'] == file].tolist()
for i in idxs:
trace_link_data_structure = self._filter(trace_link_data_structure, df, file, i)
return trace_link_data_structure
@abc.abstractmethod
def _filter(self, trace_link_data_structure: ElementLevelTraceLinkDataStructure, df, file, idx):
pass
@staticmethod
def check_and_remove(trace_link_data_structure: ElementLevelTraceLinkDataStructure, df, file, idx, columns):
result = False
for column,value in columns:
result = result or (df.loc[idx, column] == value)
if result:
trace_link_data_structure.remove_req_file_element(file, df.loc[idx].ID)
return trace_link_data_structure
class NFRElementFilter(ElementFilter):
def _filter(self, trace_link_data_structure: ElementLevelTraceLinkDataStructure, df, file, idx):
columns = [("F", '0'), ("F", 0)]
return self.check_and_remove(trace_link_data_structure,df,file,idx,columns)
class UserRelatedElementFilter(ElementFilter):
def _filter(self, trace_link_data_structure: ElementLevelTraceLinkDataStructure, df, file, idx):
columns = [("UserRelated", '1'), ("UserRelated", 1)]
return self.check_and_remove(trace_link_data_structure, df, file, idx, columns)
class UserRelatedNFRElementFilter(ElementFilter):
def _filter(self, trace_link_data_structure: ElementLevelTraceLinkDataStructure, df, file, idx):
nfr = NFRElementFilter()
ur = UserRelatedElementFilter()
tds = nfr._filter(trace_link_data_structure, df, file, idx)
return ur._filter(tds, df, file, idx)