forked from FossMec/Welcome-To-FOSS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.jade
760 lines (594 loc) · 27.1 KB
/
index.jade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
doctype html
html
head
title The quest for insights, the true objective of big data
meta(charset='utf-8')
meta(name='author', content='John Alexis Guerra Gomez')
meta(name='description', content='The quest for insights, the true objective of big data')
meta(name="viewport",content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui")
//- link(href='lib/css/reveal.css', rel='stylesheet')
//- link(href='lib/css/theme/simple.css', rel='stylesheet')
//- link(href='lib/css/zenburn.css', rel='stylesheet')
link(href='style.css', rel='stylesheet')
//- Printing and PDF exports -->
script.
var link = document.createElement( 'link' );
link.rel = 'stylesheet';
link.type = 'text/css';
link.href = window.location.search.match( /print-pdf/gi ) ? 'lib/css/print/pdf.css' : 'lib/css/print/paper.css';
document.getElementsByTagName( 'head' )[0].appendChild( link );
script(src='lib/js/d3.min.js')
script(src='lib/js/bumpChartPhotos.js')
body
.reveal
.slides
section#title
h1 The quest for insights,
h2 the true objective of big data
p
a(href='http://johnguerra.co/', target='_blank') John Alexis Guerra Gómez
br
a(href='http://twitter.com/duto_guerra') @duto_guerra
p.small Use
strong spacebar
| and the arrows to advance slides
p.small
a(href='http://infovis.co/bigDataQuest', target='_blank') http://infovis.co/bigDataQuest
//- p.small
//- a(href='http://www.cientificosdedatos.com', target='_blank') http://www.cientificosdedatos.com
section#outline
h2 Outline
ol
li Who am I?
li What is Big Data?
li How to process/store it?
li How to make sense of it?
//- ------------------------WHOAMI----------------------
section#whoamI
section
h1 Who am I?
section
//- h2 Ingeniero de sistemas y computación UTP
img(src="images/Pereira.jpg")
section#IRIS
img(src="images/IRIS_y_su_caja_peq.png")
section#KebSolutions
img(src="images/logo_keb.png")
section#Fulbright
img(src="images/fulbright.png")
section#Doctorado
h1 PhD
section#HCIL
img(src="images/Ben_and_Catherine.jpg")
section
iframe.blocks(src="https://cdn.rawgit.com/mbostock/4063582/raw/dd152a94f98ab7081a41096a88ece375e64a8b6c/index.html")
section
img(src="images/lifelines.jpg")
section
img(src="images/lifeflow.png")
section
img(src="images/2012_08_20_paxs_overview_september_01.png")
section
img(src="images/treeversity_v2.png")
section
//- img(src="images/2013_03_29_Budget_2013_Reporting2.png")
section
img(src="images/2013_04_29_eBay.png")
section
img(src="images/13CaseStudies.png")
section
h2 Silicon Valley
//- img(src="images/mapaCalifornia.png")
section
img(src="images/parc_rgb.png")
section
img.demo(src="images/topics_steamchart_with_wordclouds.png")
section
img(src="images/labs_us_purple_1000px_wide.png")
//- section
//- img(src="images/Flickr.png")
section
img(src="images/christmass.png")
section
img(src="images/FlickrPopular.png")
section
img(src="images/topPhotos.png")
section
img(src="images/photoRing.png")
//- section
//- img(src="images/GeoExplorer.png")
//- section
//- h2 Many other projects
//- section
//- img(src="images/TradeFlow.png")
//- section
//- img(src="images/Tweetometro.png")
//- section
//- img(src="images/Wholikesmyfb.png")
//- section
//- iframe.blocks(src="https://cdn.rawgit.com/john-guerra/4db5024e00a82f10a2dc/raw/1c7d368565d6c59dc9608dc5e792786616c26aff/index.html")
//- //- img(src="images/ForceColombia.png")
//- section
//- img(src="images/MapaColombia.png")
//- section
//- img(src="images/VIT.png")
//- section
//- img(src="images/QueCarroComprar.png")
//- ------------------WHAT'S BIG DATA----------------------
section#whatIsBigData
section
h1 What is Big Data?
section
h2 You might have heard of the Vs of Big Data
ul
li.fragment Volume
li.fragment Velocity
li.fragment Variety
li.fragment and Veracity and Value
li.fragment Too ambiguous!! Let's go beyond that
section
h2 How Big is big?
p.fragment Can you fit it in one computer?
p.fragment Yes? -> Then is not really big
p.fragment Let's call it big data only if it doesn't fit on one computer (and has the 3Vs)
section
h2 Why this criteria?
p.fragment Because if it fits in one computer you don't need all the overhead of big data technologies, just use a traditional relational database.
section
img(src="images/datafit1.svg")
section
img(src="images/datafit2.svg")
section
h2 Example: photo collection
ul
li.fragment One photo -> 10MB
li.fragment 1k photos in a cellphone -> 10MB * 1k = 10000MB = 10GB
li.fragment 50k photos in your computer -> 10MB * 50k = 500GB
li.fragment Is that big data?
li.fragment No, you can fit that in one cheap external hard drive
//- li.fragment BTW, Flickr gives you 1000GB (1TB) for free
section
h2 Problem: count how many blue photos in my collection?
p How do you compute this?
p.fragment Put all your photos in one computer
p.fragment Go through all the collection and count
section
img(src="images/datafit_processing.svg")
section
h2 Flickr size
p 80+ trillion photos (80'''000''000'000.000)
p.fragment That's big data
section
h2 How many blue photos on Flickr?
p How do you compute this?
p.fragment Distribute the data among hundreds of thousand of computers (a cluster).
p.fragment Compute subtotals on each chunk of the data. (Map)
p.fragment Aggregate the subtotals into one big total. (Reduce)
section
img(src="images/dont_fit.svg")
section
img(src="images/dont_fit2.svg")
section
img(src="images/dont_fit_blocks.svg")
section
img(src="images/dont_fit_blocks_distributed.svg")
section
img(src="images/map_reduce.svg")
section
h2 How many computers do you need?
p.fragment total / one computer capacity?
p.fragment What if one computer breaks down?
p.fragment We need redundancy -> Each photo is stored in many computers
p.fragment How do we control versions? How to keep records? What goes where?
p.fragment
strong That's why we need big data!!
section
img(src="images/redundancy.svg")
section#Technologies
h2 Technologies
ul
li.fragment MapReduce (Hadoop, Hive, pig, Spark ...)
li.fragment NoSQL Databases (Redis, Cassandra, MongoDB, Neo4J)
li.fragment Distributed Relational (SQL) Databases (MySQL, PostgreSQL, Oracle, SqlServer)
li.fragment Many others
section
h2 Hadoop
ul
li Computing platform for big data
li Uses clusters for storing and processing the data
section
h2 Hadoop Architecture
img(src="images/Hadoop Architecture.svg")
section
h2 Spark
p A distributed computing alternative of to map reduce.
ul
li Easier to use
li Integrates better with traditional programming models
section
h2 NoSQL Databases
ul
li Scalable storage platforms that use techniques different to traditional SQL databases
li Sacrifices features for performance
section
h2 Types of NoSQL
ul
//- #[a(href="https://en.wikipedia.org/wiki/Apache_Cassandra") Cassandra]
li.fragment Column Oriented: Cassandra, HBase, Redshift ...
li.fragment Key-value: Redis, memcached, Aerospike ....
li.fragment Document based: MongoDB, CouchDB, DynamoDB ...
li.fragment Graph based: Neo4J, Titan, ...
section
h2 Bonus
p #[a(href="https://vimeo.com/156305374") Introduction to NoSQL for Web Developers]
section
h2 Distributed Relational DB
ul
li You can also use traditional databases on a distributed way.
li Divides the database into shards.
li Usually doesn't scale that well.
section
h2 Others
ul
li Google #[a(href="https://cloud.google.com/dataflow/") DataFlow]
li Google's replacement for MapReduce based on flows.
li Supposed to scale better.
li AFAIK can only be used with Google's Cloud.
//- ------------------HOW TO MAKE SENSE----------------------
section#howToMakeSense
section
h1 Making sense
section
h2 How to make sense of it?
ul
li.fragment Statistical Analysis
li.fragment Machine Learning and Artificial Intelligence
li.fragment Visual Analytics (and data analytics)
section
h3 Data Mining/Machine Learning
p: img(src='images/machine_learning_diagram.png')
section
h3 Information Visualization
p: img(src='images/infovis_diagram.png')
section
h3 Infovis + Algorithms
p: img(src='images/infovis_algorithms_diagram.png')
section
table#comparisonTable
tr
td.fragment
h2 Traditional
ul
li Query for known patterns
li Display results using traditional techniques
br
strong Pros:
br
ul
li Many solutions
li Easier to implement
br
strong Cons:
br
ul
li Can’t search for the unexpected
td.fragment
h2 Data Mining/ML
ul
li Based on statistics
li Black box approach
li Output outliers and correlations
li Human out of the loop
br
strong Pros:
br
ul
li Scalable
br
strong Cons:
ul
li Analysts have to make sense of the results
li Makes assumptions on the data
td.fragment
h2 InfoVis
ul
li Visual Interactive Interfaces
li Human in the loop
br
strong Pros:
br
ul
li Visual bandwidth is enormous
li Experts decided what to search for
li Identify unknown patterns and errors in the data
br
strong Cons
br
ul
li Scalability can be an issue
section
h2 Why should we visualize?
section
h2 Anscombe's quartet
img(src="images/anscombes.jpg")
section
h2 Anscombe's quartet
img(src="images/anscombes2.jpg")
section
h2 Anscombe's visualized
img(src="images/anscombes_graph.jpg")
section
h2 In Infovis we look for #[strong Insights]
ul
li.fragment Deep understanding
li.fragment Meaningful
li.fragment Non obvious
li.fragment Actionable
section
h2 How do I do it?
img.demo(src="images/My skills.png")
section#BuscandoInsights
h2 What do I use?
img.demo(src="images/What I use.png")
section
section
h1 Insights
section#InsightFDA
h2 FDA
p Task: Change in drug's adverse effects reports
p User: FDA Analysts
section
h2 State of the art
img.demo(src="images/sectorMap_drug1.png")
section
img.demo(src="images/sectorMaps.png")
section
img(src="images/skylines_explanation.png")
section
a(href="https://treeversity.cattlab.umd.edu/?hierarchy=soc/hlgt/hlt/pt&db=tv2_sectorMaps6&seqFrom=01/01/08&seqTo=01/01/12&viz=Skylines&fixedHierarchy=soc/hlgt/hlt/pt&valueAttrib=ebgm&title=FDA%20Adverse%20Drug%20Effects" target="_blank")
img(src="images/2013_03_29_FDA_all.png")
a(href="https://treeversity.cattlab.umd.edu/") https://treeversity.cattlab.umd.edu/
section#InsightPARC
h2 Health insurance claims
p Task: Detect fraud networks
p User: Undisclosed Analysts
section
img.demo(src="images/network_explorer_before.png")
section
h2 Clustering
//- img(src="images/.jpg")
iframe.blocks(src="https://cdn.rawgit.com/john-guerra/ecdde32ab4ad91a1a240/raw/2c1a843df8631604a99140ddc9db8ee048624a79/index.html")
section
h2 Force in a box
iframe.blocks(src="https://cdn.rawgit.com/john-guerra/14c943d8f198d9f3fef2/raw/320474d468321d00f3241609a125c8d37935474b/index.html")
section
h2 Overview
img.demo(src="images/overview_10k_nointer_cropped.png")
section
h2 Ego distance
img.demo(src="images/network_explorer_ego_distance.png")
section#InsightTweetometro
h2 Tweetometro
p Task: Twitter behavior during Presidential Elections
p User: Me
section
iframe.blocks(src="http://tweetometro.co" alt="images/tweetometro.png")
a(href="http://tweetometro.co") http://tweetometro.co
section
h2 Normal tweets
img.demo(src="http://tweetometro.co/img/all_tweets_May_25_2014.png")
section
h2 Weird tweets?
img.demo(src="http://tweetometro.co/img/suspicious_tweets_May_25_2014.png")
section
h2 Creation dates
img.demo(src="http://tweetometro.co/img/user_creation_date_May_25_2014.png")
section
h2 Number of followers
img.demo(src="http://tweetometro.co/img/num_followers_May_25_2014.png")
section
span.
<script type='text/javascript' src='http://public.tableau.com/javascripts/api/viz_v1.js'></script><div class='tableauPlaceholder' style='width: 1032px; height: 677px;'><noscript><a href='http://tweetometro.co/robots_May25.html'><img alt='Análisis Elecciones Presidenciales Colombia ' src='http://public.tableau.com/static/images/An/AnlisisPosiblesRobotsEleccionesColombiaMay25/AnlisisEleccionesPresidencialesColombia/1_rss.png' style='border: none' /></a></noscript><object class='tableauViz' width='1032' height='677' style='display:none;'><param name='host_url' value='http%3A%2F%2Fpublic.tableau.com%2F' /> <param name='site_root' value='' /><param name='name' value='AnlisisPosiblesRobotsEleccionesColombiaMay25/AnlisisEleccionesPresidencialesColombia' /><param name='tabs' value='no' /><param name='toolbar' value='yes' /><param name='static_image' value='http://public.tableau.com/static/images/An/AnlisisPosiblesRobotsEleccionesColombiaMay25/AnlisisEleccionesPresidencialesColombia/1.png' /> <param name='animate_transition' value='yes' /><param name='display_static_image' value='yes' /><param name='display_spinner' value='yes' /><param name='display_overlay' value='yes' /><param name='display_count' value='yes' /></object></div>
section#InsightCars
h2 What car to buy?
p Task: What's the best car to buy?
p User: Me
section
h2 Normal procedure
p Ask friends and family
section#Renault4
span.
<a data-flickr-embed="true" href="https://www.flickr.com/photos/synx508/8083533370/in/photolist-djjdR1-afaxQE-88rrWV-85GG7C-dhdprm-cB1GP1-6T5Y57-bwHLJo-kCowWc-q7ohL2-pZdWRQ-aqbuDd-CwU436-8Eruxo-nzoa7c-BzobPh-ptWmt6-BYoC9H-81RCdE-dPuGGx-q4JtAk-7XXciZ-r1UjFV-iKrUr5-iEmCiG-pcraD8-fNGpSf-fNGpFd-cN7xp-7SC3f9-D3mfHj-dhdpZ8-nzh5GD-85GGwL-5wBWcW-7tCm5D-8RDcp9-7kBmch-afaxQJ-8RA446-9z4AuX-6B9YeE-9ZVygr-7SC3f5-e3sALe-6B5Zon-apFGuQ-a6gMVY-5wVRyj-7pJkMr" title="Renault 4"><img src="https://c3.staticflickr.com/9/8055/8083533370_a0597b2b89_b.jpg" width="1024" height="683" alt="Renault 4"></a><script async src="//embedr.flickr.com/assets/client-code.js" charset="utf-8"></script>
section#Renault4Pimped
span.
<a data-flickr-embed="true" href="https://www.flickr.com/photos/zenzak35/14225528098/" title="Renault 4 JP4"><img src="https://c3.staticflickr.com/4/3909/14225528098_f77d8393ac_b.jpg" width="1024" height="576" alt="Renault 4 JP4"></a><script async src="//embedr.flickr.com/assets/client-code.js" charset="utf-8"></script>
section#Renault4Crashed
span.
<a data-flickr-embed="true" href="https://www.flickr.com/photos/95012335@N02/16327150369/in/photolist-qSLUYz-p8zsEJ-fHL1jE-4grA8b-8YBfrt-8mRG7n-49vZ6h-dXiuZG-kseXjY-CpB1rB-kCp4NF-75n5c9-8PiBKZ-5999UC-C5Lz5Y-eBWbNx-eBEvp-fBpDP7-nF4xTQ-8spzYg-a7ovQd-4r1u5g-aPE45k-7R62M3-dZQnYp-djjdR1-afaxQE-88rrWV-85GG7C-dhdprm-cB1GP1-6T5Y57-bwHLJo-kCowWc-q7ohL2-pZdWRQ-aqbuDd-CwU436-8Eruxo-nzoa7c-BzobPh-ptWmt6-BYoC9H-81RCdE-dPuGGx-q4JtAk-7XXciZ-r1UjFV-iKrUr5-iEmCiG" title="Teilgefalteter Renault 4 am Strassenrand"><img src="https://c2.staticflickr.com/8/7437/16327150369_c5a839efab_b.jpg" width="1024" height="681" alt="Teilgefalteter Renault 4 am Strassenrand"></a><script async src="//embedr.flickr.com/assets/client-code.js" charset="utf-8"></script>
section
h2 Problem
p That's inferring statistics from a sample n=1
section
h2 Better approach
p Data based decisions
section
img(src="images/tucarro.png")
a(href="http://tucarro.com") http://tucarro.com
section
iframe.blocks(src="http://infovis.co/carrosUsados/todosPuntos.html")
section
iframe.blocks(src="http://infovis.co/carrosUsados/depreciacionMarcas.html")
section
iframe.blocks(src="http://infovis.co/carrosUsados/depreciacionesCarros.html")
//- section
//- h1 Visual Analytics en Wingz
//- section
//- img.demo(src="images/PriceDeviation.png")
//- p Insight: Estamos comprando a precios no competitivos
//- section
//- img.demo(src="images/Venta media la 94.png")
//- p Insight: Generalmente el domingo se vende más, en todos menos en el restaurante de la 94
//- section
//- img(src="images/vendedores_robando_blurred.png")
//- p Insight: Tenemos vendedores tomando aprovechándo las falencias del sistema
//- section
//- img(src="images/vendedores_robando2_blurred.png")
//- p Insight: Tenemos vendedores tomando aprovechándo las falencias del sistema
//- section
//- img(src="images/clientes.png")
//- p Insight: Tenemos clientes VIP desatendidos
//- section
//- img(src="images/ventas_por_hora_dia.png")
//- p Insight: No todas las horas del día son iguales
//- section
//- img(src="images/vendedores_productos.png")
//- p Analítica: ¿Qué vendedores venden más ciertos productos?
//- section
//- img(src="images/clientes.png")
//- p Analítica: ¿Cuáles son los productos favoritos de nuestros clientes?
section
h2 Take home message
ul
li.fragment Big data? Sure, If it doesn't fit on a computer
li.fragment Finding #[strong insights], that's what matters
li.fragment #[strong Visual Analytics], a good way of finding insights
section#end
h1 Thank You
h2 Questions?
div.contactInfo
p John Alexis Guerra Gómez
a(href="http://johnguerra.co") johnguerra.co
br
a(href="http://twitter.com/duto_guerra") @duto_guerra
section#Bonus
h1 Bonus
//- --------------------- Types of visualization
section#typesOfVisualization
section
h2 Types of Visualization
ul
li Infographics
li Scientific Visualization (sciviz)
li Information Visualization (infovis, datavis)
section
h3 Infographics
img(src="images/infographics.png")
section
h3 Scientific Visualization
ul
li Inherently spatial
li 2D and 3D
p: img(src="images/sciviz.png")
section
h3 Information Visualization
img(src="images/infovis_examples.png")
section
h2 Infovis Basics
section
h2 Visualization Mantra
ul
li Overview first
li Zoom and Filter
li Details on Demand
section#munznerstyle
iframe(width='100%', height='500px', scrolling='no', frameborder='no', src= "munzner.html")
section#munznerpreference
h2 Perception Preference
div#munznerpreferencechart
script.
myBumpChart = bumpChartPhotos()
.x(function (d) { return d.dataType; })
.y(function (d) { return d.position; })
.key(function (d) { return d.attribute; })
.label(function (d) { return d.attribute; })
.width(900)
.height(400);
//- img(src="images/munzner_preference.png", height="400px")
d3.json("munzner_preference.json", function (err, data) {
var procData =[];
data.forEach(function (c) {
c.preference.forEach(function (p, i) {
procData.push({
"dataType":c.type,
"position":i,
"attribute":p
});
});
});
d3.select("#munznerpreferencechart")
.datum(procData)
// .style("height", timelineHeight + "px")
.call(myBumpChart);
});
p.small Adapted from from:
a(href="http://www.cs.ubc.ca/labs/imager/tr/2009/VisChapter/akp-vischapter.pdf", target='_blank') Tamara Munzner Book Chapter
section#dataTypes
section
h2 Data Types
table.small
tr
td: strong 1-D Linear
td Document Lens, SeeSoft, Info Mural
tr
td: strong 2-D Map
td GIS, ArcView, PageMaker, Medical imagery
tr
td: strong 3-D World
td CAD, Medical, Molecules, Architecture
tr
td: strong Multi-Var
td Spotfire, Tableau, GGobi, TableLens, ParCoords,
tr
td: strong Temporal
td LifeLines, TimeSearcher, Palantir, DataMontage, LifeFlow
tr
td: strong Tree
td Cone/Cam/Hyperbolic, SpaceTree, Treemap, Treeversity
tr
td: strong Network
td Gephi, NodeXL, Sigmajs
//- //- ----------- Cómo lo hago
//- section
//- section
//- h2 Traditional Data Science
//- img.demo(src="images/Traditional Data Science.png")
//- section
//- h2 Visual Analytics
//- img.demo(src="images/Visual Analytics.png")
script(src='lib/js/head.min.js')
script(src='lib/js/reveal.js')
script.
Reveal.initialize({
controls: true,
progress: true,
history: true,
center: true,
rollingLinks: true,
transition: "convex",
//- width: "90%",
//- height: 1.0,
dependencies: [
// Cross-browser shim that fully implements classList - https://github.com/eligrey/classList.js/
{ src: 'lib/js/classList.js', condition: function() { return !document.body.classList; } },
// Interpret Markdown in <section> elements
{ src: 'plugin/markdown/marked.js', condition: function() { return !!document.querySelector( '[data-markdown]' ); } },
{ src: 'plugin/markdown/markdown.js', condition: function() { return !!document.querySelector( '[data-markdown]' ); } },
// Syntax highlight for <code> elements
{ src: 'plugin/highlight/highlight.js', async: true, callback: function() { hljs.initHighlightingOnLoad(); } },
// Zoom in and out with Alt+click
{ src: 'plugin/zoom-js/zoom.js', async: true },
// Speaker notes
{ src: 'plugin/notes/notes.js', async: true },
//- // Remote control your reveal.js presentation using a touch device
//- { src: 'plugin/remotes/remotes.js', async: true },
//- // MathJax
//- { src: 'plugin/math/math.js', async: true }
]
});
script.
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-50178794-5', 'auto');
ga('send', 'pageview');