forked from nshepperd/gpt-2
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain-horovod.py
194 lines (157 loc) · 6.37 KB
/
train-horovod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python3
# Usage:
# PYTHONPATH=src ./train --dataset <file|directory|glob>
import fire
import json
import os
import numpy as np
import tensorflow as tf
import random
import time
import horovod.tensorflow as hvd
import model, sample, encoder
from load_dataset import load_dataset, Sampler
CHECKPOINT_DIR = 'checkpoint'
SAMPLE_DIR = 'samples'
hvd.init()
def maketree(path):
try:
os.makedirs(path)
except:
pass
def train_main(dataset,
model_name='117M',
seed=None,
batch_size=2,
sample_length=1023,
sample_num=1,
sample_every=4500,
run_name='run1',
restore_from='latest',
save_every=2000,
combine=50000):
enc = encoder.get_encoder(model_name)
hparams = model.default_hparams()
with open(os.path.join('models', model_name, 'hparams.json')) as f:
hparams.override_from_dict(json.load(f))
if sample_length is None:
sample_length = hparams.n_ctx // 2
elif sample_length > hparams.n_ctx:
raise ValueError(
"Can't get samples longer than window size: %s" % hparams.n_ctx)
# TF config
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
context = tf.placeholder(tf.int32, [batch_size, None])
np.random.seed(seed)
tf.set_random_seed(seed)
output = model.model(hparams=hparams, X=context)
loss = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=context[:, 1:], logits=output['logits'][:, :-1]))
tf_sample = sample.sample_sequence(
hparams=hparams,
length=sample_length,
context=context,
batch_size=batch_size,
temperature=0.8,
top_k=40)
train_vars = [v for v in tf.trainable_variables() if 'model' in v.name]
opt = tf.train.AdamOptimizer()
opt = hvd.DistributedOptimizer(opt)
train_op = opt.minimize(loss, var_list=train_vars)
# Horovod: broadcast initial variable states from rank 0 to all other processes.
# This is necessary to ensure consistent initialization of all workers when
# training is started with random weights or restored from a checkpoint.
bcast = hvd.broadcast_global_variables(0)
saver = tf.train.Saver(
var_list=train_vars,
max_to_keep=5,
keep_checkpoint_every_n_hours=2)
sess.run(tf.global_variables_initializer())
if restore_from == 'latest':
ckpt = tf.train.latest_checkpoint(
os.path.join(CHECKPOINT_DIR, run_name))
if ckpt is None:
# Get fresh GPT weights if new run.
ckpt = tf.train.latest_checkpoint(
os.path.join('models', model_name))
elif restore_from == 'fresh':
ckpt = tf.train.latest_checkpoint(
os.path.join('models', model_name))
else:
ckpt = tf.train.latest_checkpoint(restore_from)
print(str(hvd.local_rank()), 'Loading checkpoint', ckpt)
saver.restore(sess, ckpt)
bcast.run()
print(str(hvd.local_rank()), 'Loading dataset...')
chunks = load_dataset(enc, dataset, combine)
data_sampler = Sampler(chunks)
print(str(hvd.local_rank()), 'dataset has', data_sampler.total_size, 'tokens')
print(str(hvd.local_rank()), 'Training...')
counter = 1
if os.path.exists(os.path.join(CHECKPOINT_DIR, run_name, 'counter')):
# Load the step number if we're resuming a run
# Add 1 so we don't immediately try to save again
with open(os.path.join(CHECKPOINT_DIR, run_name, 'counter'),
'r') as fp:
counter = int(fp.read()) + 1
def save():
maketree(os.path.join(CHECKPOINT_DIR, run_name))
print(
'Saving',
os.path.join(CHECKPOINT_DIR, run_name,
'model-{}').format(counter))
saver.save(
sess,
os.path.join(CHECKPOINT_DIR, run_name, 'model'),
global_step=counter)
with open(os.path.join(CHECKPOINT_DIR, run_name, 'counter'),
'w') as fp:
fp.write(str(counter) + '\n')
def generate_samples():
context_tokens = data_sampler.sample(1)
all_text = []
index = 0
while index < sample_num:
out = sess.run(
tf_sample, feed_dict={context: batch_size*[context_tokens]})
for i in range(min(sample_num - index, batch_size)):
text = enc.decode(out[i])
text = '======== SAMPLE {} ========\n{}\n'.format(index + 1, text)
all_text.append(text)
index += 1
print(text)
maketree(os.path.join(SAMPLE_DIR, run_name))
with open(
os.path.join(SAMPLE_DIR, run_name,
'samples-{}').format(counter), 'w') as fp:
fp.write('\n'.join(all_text))
avg_loss = (0.0, 0.0)
start_time = time.time()
try:
while True:
batch = [data_sampler.sample(1024) for _ in range(batch_size)]
_, lv = sess.run((train_op, loss), feed_dict={context: batch})
avg_loss = (avg_loss[0] * 0.99 + lv, avg_loss[1] * 0.99 + 1.0)
if hvd.rank() == 0:
if counter % save_every == 0:
save()
if counter % sample_every == 0:
generate_samples()
print(
'[{counter} | {time:2.2f}] loss={loss:2.2f} avg={avg:2.2f}'
.format(
counter=counter,
time=time.time() - start_time,
loss=lv,
avg=avg_loss[0] / avg_loss[1]))
counter += 1
except KeyboardInterrupt:
print('interrupted')
if hvd.rank() == 0:
save()
if __name__ == '__main__':
fire.Fire(train_main)