-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainSimilarityModel.py
156 lines (119 loc) · 4.97 KB
/
trainSimilarityModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import datetime
import torch
import torch.nn as nn
import numpy as np
import parse_PPDD as pd
import pianoRollConvNet as prcn
import test_correlation as tc
import pickle
from importlib import reload
reload(pd)
reload(prcn)
reload(tc)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_fname = 'models/run {}.txt'.format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
batch_size = 512
print('parsing data...')
ids, data = pd.parse_PPDD(limit=5000)
# given a prime, its continuation, and a translation t in that prime
# return the last window of the prime and the translated window from the start of the prime
# AND the naive-matching distance between the continuation and the predicted continuation at that spot.
def get_training_example(prime, cont, t, prime_bounds, window_size=cont_length_default):
right_limit = prime_bounds[1]
left_limit = prime_bounds[0]
if t == 'best':
t, _ = find_best_possible_translation(prime, cont, prime_bounds, window_size)
# if the prime has too few notes in it just extend the left limit of it until it fits
max_translate_amt = int(right_limit - left_limit - window_size * 2)
if max_translate_amt < window_size:
left_limit = right_limit - window_size * 3 # ensures at least @window_size number of possible translations
max_translate_amt = window_size
if t >= max_translate_amt:
t = t % max_translate_amt
base_roll = point_cloud_to_roll(prime, right_limit - window_size)
window_slide_roll = point_cloud_to_roll(prime, left_limit + t)
predict_l = left_limit + t + window_size
prediction = extract_by_time_range(prime, predict_l, window_size)
prediction[:, 0] = prediction[:, 0] + right_limit - predict_l
accuracy = rolls_match(cont, prediction)['F1']
stack_rolls = np.stack([base_roll, window_slide_roll], axis=2)
return stack_rolls, accuracy
def find_best_possible_translation(prime, cont, bounds, window_size):
right_limit = bounds[1]
left_limit = bounds[0]
max_translate_steps = int(right_limit - left_limit - 2 * window_size)
translate_amts = np.arange(0, max_translate_steps, 1)
best_translation = -1
best_acc = 0
for t in translate_amts:
predict_l = left_limit + t + window_size
prediction = extract_by_time_range(prime, predict_l, window_size)
# translate to start of true continuation
prediction[:, 0] = prediction[:, 0] + right_limit - predict_l
accuracy = rolls_match(cont, prediction)['F1']
if accuracy > best_acc:
best_acc = accuracy
best_translation = t
return best_translation, best_acc
def point_cloud_to_roll(inp, start_time, lowest=25, height=80, length=80):
out = np.zeros((length, height), dtype='bool')
# add all notes whose times are between start_time and start_time + length
for point in inp:
time = point[0]
note = point[1]
if time < start_time or time >= (start_time + length):
continue
elif note < lowest:
out[time - start_time][0] = True
elif note >= lowest + height:
out[time - start_time][height - 1] = True
else:
out[time - start_time][note - lowest] = True
return out
def get_batch(ids, data, batch_size=batch_size):
items = []
scores = []
chosen_ids = np.random.choice(ids, batch_size // 2)
for id in chosen_ids:
prime = data[id]['prime'][:, [0, 1, 4]]
cont = data[id]['cont'][:, [0, 1, 4]]
bounds = (min(prime[:, 0]), max(prime[:, 0]))
channel_nums = set(prime[:, 2])
for channel in channel_nums:
t = np.random.randint(10000)
rolls, acc = get_training_example(prime, cont, t, bounds)
items.append(rolls)
scores.append(acc)
# good_rolls, acc = tc.get_training_example(prime, cont, 'best', bounds)
# items.append(rolls)
# scores.append(acc)
if len(items) >= batch_size:
break
items = np.stack(items[:batch_size], axis=0)
scores = np.stack(scores[:batch_size], axis=0)
return items, scores
print('generating batch...')
train_data, train_labels = get_batch(ids, data, 256)
print('making model...')
model = prcn.pianoRollConvNet(img_size=train_data[0].shape)
model.to(device)
losses = []
train_data = train_data[:, None, :, :, :]
x_train = torch.tensor(train_data).float().to(device)
y_train = torch.tensor(train_labels).float().to(device)
learning_rate = 3e-4
loss_func = nn.MSELoss()
eval_loss_func = nn.functional.mse_loss
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(1000):
# Forward pass: Compute predicted y by passing x to the model
y_pred = model(x_train)
# Compute loss
y_pred = y_pred[:, 0]
loss = loss_func(y_pred, y_train)
losses.append(loss.item())
print(loss)
# Reset gradients to zero, perform a backward pass, and update the weights
optimizer.zero_grad()
loss.backward()
optimizer.step()