-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_correlation.py
278 lines (218 loc) · 9.76 KB
/
test_correlation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import numpy as np
import parse_csvs as pc
import matplotlib.pyplot as plt
from importlib import reload
import evaluate_prediction as ep
from collections import Counter
reload(pc)
reload(ep)
multiplier = 12
cont_length_default = multiplier * 10
window_size_default = multiplier * 8
def plot_roll(inp, roll2=None, mult=12):
if type(inp) == dict:
roll = inp['prime']
roll2 = inp['cont']
else:
roll = inp
x = roll[:, 0]
y = roll[:, 1]
c = roll[:, 4].astype('int')
last = max(roll[:, 0])
colors = np.array(['k', 'b', 'g', 'r', 'c', 'm', 'y'])
if roll2 is not None:
x = np.concatenate((x, roll2[:, 0]))
y = np.concatenate((y, roll2[:, 1]))
c = np.concatenate((c, roll2[:, 4].astype('int')))
c = c % len(colors)
x = x / mult
last = last / mult
plt.clf()
plt.axvline(last)
plt.scatter(x, y, c=colors[c])
def get_best_translation(prime_window, fixed_window):
# based on the evaluate_tec method from
# github.com/BeritJanssen/PatternsForPrediction.
translation_vectors = []
generated_vec = np.array(fixed_window)
for i in prime_window:
vectors = generated_vec - i
translation_vectors += [tuple(v) for v in vectors]
grouped_vectors = dict(Counter(translation_vectors))
best_vector = max(grouped_vectors, key=lambda x: grouped_vectors[x])
return best_vector, grouped_vectors[best_vector]
def extract_by_time_range(inp, left, size):
inds = np.logical_and(left <= inp[:, 0], inp[:, 0] < left + size)
return np.copy(inp[inds, :])
def get_all_translations(prime, cont, bounds, window_size=None):
# if there are no notes in the prime - why bother?
if len(prime) == 0:
return (0, 0), ((0, 0), (0, 0)), ([], [])
right_limit = bounds[1]
left_limit = bounds[0]
cont_length = cont_length_default
# if the prime spans less time than the desired continuation then just repeat the prime backwards
if right_limit - left_limit < cont_length:
factor = int(np.ceil(cont_length / (right_limit - left_limit)))
old_prime = np.copy(prime)
for i in range(1, factor + 1):
translate_prime = np.copy(old_prime)
translate_prime[:, 0] -= (right_limit - left_limit) * i
prime = np.concatenate([translate_prime, prime])
if not window_size:
window_size = min(cont_length // 2, (right_limit - left_limit) // 2)
fixed_window = prime[right_limit - window_size <= prime[:, 0]]
prime_window = prime[prime[:, 0] < right_limit - window_size]
# if the fixed window has no notes in it - there's nothing to go on. assume that the continuation is also empty
if len(fixed_window) == 0 or len(prime_window) == 0:
best_trans_vector = (0, 0)
predicted_cont = []
else:
best_trans_vector, best_amt = get_best_translation(prime_window, fixed_window)
translated_prime = prime + best_trans_vector
predicted_cont = extract_by_time_range(translated_prime, right_limit, cont_length)
# if the continuation has no notes in it BUT the fixed window does: well, we're gonna be 100% wrong no matter what
if len(cont) == 0:
predicted_score = 0
ideal_score = 0
ideal_trans_vector = 0
ideal_cont = []
else:
ideal_trans_vector, ideal_amt = get_best_translation(prime, cont)
ideal_translated_prime = prime + ideal_trans_vector
ideal_cont = extract_by_time_range(ideal_translated_prime, right_limit, cont_length)
predicted_score = rolls_match(cont, predicted_cont)['F1']
ideal_score = rolls_match(cont, ideal_cont)['F1']
return (predicted_score, ideal_score), (best_trans_vector, ideal_trans_vector), (predicted_cont, ideal_cont)
def rolls_match(orig, pred):
# just consider onset and pitch right now
if len(orig) == 0 and len(pred) == 0:
return {'rec': 1, 'prec': 1, 'F1': 1}
elif len(orig) == 0 or len(pred) == 0:
return {'rec': 0, 'prec': 0, 'F1': 0}
intersect_total = 0
or_set = {tuple(x) for x in orig[:, (0, 1)]}
pr_set = {tuple(x) for x in pred[:, (0, 1)]}
intersect_total += len(or_set.intersection(pr_set))
or_total_size = len(or_set)
pr_total_size = len(pr_set)
recall = intersect_total / or_total_size
precision = intersect_total / pr_total_size
if precision + recall == 0:
f1 = 0.0
else:
f1 = (2 * recall * precision) / (
recall + precision
)
return {'rec': recall, 'prec': precision, 'F1': f1}
def plot_rolls(rolls):
rolls[:, :, 1] *= 2
rolls = np.sum(rolls, axis=2)
plt.imshow(rolls.T)
plt.show()
if __name__ == '__main__':
# remember:
# 0: onset time in beats
# 1: MIDI note
# 2: morphetic pitch estimation
# 3: duration in beats
# 4: channel
print('parsing PPDD...')
ids, data = pc.parse_PPDD(PPDD='./PPDD', limit=10000, mult=multiplier)
pred_accs = []
ideal_accs = []
m_pred_accs = []
m_ideal_accs = []
print('translating...')
indices_choose = np.random.choice(10000, 1000)
for n, idx in enumerate(indices_choose):
if not n % 50:
print(f'processing entry {n} of {len(indices_choose)}...')
# get as triples of (onset time, pitch, channel)
i = ids[idx]
prime = data[i]['prime'][:, [0, 1, 4]]
cont = data[i]['cont'][:, [0, 1, 4]]
bounds = (min(prime[:, 0]), max(prime[:, 0]))
# prime[:, 2] = 0
# cont[:, 2] = 0
channel_nums = list(set(prime[:, 2]))
# channel_lengths = [len(prime[prime[:,2] == x, :2]) for x in channel_nums]
# merge_channels = [channel_nums[i] for i, x in enumerate(channel_lengths) if x < np.mean(channel_lengths)]
#
# if len(merge_channels) > 1:
# for c in merge_channels:
# prime[prime[:, 2] == c, 2] = -1
# channel_nums = list(set(prime[:, 2]))
# best_predictions = []
# ideal_predictions = []
#
# pred_scores = []
# for channel in channel_nums:
# channel_prime = prime[prime[:, 2] == channel, :2]
# channel_cont = cont[cont[:, 2] == channel, :2]
#
# scores, vectors, continuations = \
# get_all_translations(channel_prime, channel_cont, bounds=bounds, window_size=window_size_default // 2)
# best_predictions.extend(continuations[0])
# ideal_predictions.extend(continuations[1])
# # print(f'c {channel}, pred. trans = {vectors[0]}, ideal trans = {vectors[1]} '
# # f'pred score = {scores[0]:.3f}')
# pred_scores.append(scores[0] * len(channel_prime))
# pred_avg_score = np.mean(pred_scores) / len(prime)
m_scores, m_vectors, m_continuations = \
get_all_translations(prime[:, :2], cont[:, :2], bounds=bounds, window_size=window_size_default // 2)
# best_predictions = sorted(best_predictions, key=lambda x: x[0])
# if len(best_predictions) > 0:
# best_predictions = np.unique([tuple(x) for x in best_predictions], axis=0)
#
# ideal_predictions = sorted(ideal_predictions, key=lambda x: x[0])
# if len(ideal_predictions) > 0:
# ideal_predictions = np.unique([tuple(x) for x in ideal_predictions], axis=0)
if len(m_continuations[0]) > 0:
m_best_predictions = np.unique([tuple(x) for x in m_continuations[0]], axis=0)
if len(m_continuations[1]) > 0:
m_ideal_predictions = np.unique([tuple(x) for x in m_continuations[1]], axis=0)
mixed_true = cont[:, :2]
mixed_true = np.unique([tuple(x) for x in mixed_true], axis=0)
if len(m_best_predictions) == 1:
m_best_predictions = np.concatenate([m_best_predictions, [[0, 0]]])
if len(m_ideal_predictions) == 1:
m_ideal_predictions = np.concatenate([m_ideal_predictions, [[0, 0]]])
try:
# res_pred = ep.evaluate_tec(mixed_true, best_predictions)['F1']
# res_ideal = ep.evaluate_tec(mixed_true, ideal_predictions)['F1']
m_res_pred = ep.evaluate_tec(mixed_true, m_best_predictions)
m_res_ideal = ep.evaluate_tec(mixed_true, m_ideal_predictions)
# pred_accs.append(res_pred)
# ideal_accs.append(res_ideal)
m_pred_accs.append(m_res_pred)
m_ideal_accs.append(m_res_ideal)
except ValueError:
print('empty prediction - continuing')
continue
# better = ((res_pred < m_res_pred) == (pred_avg_score < m_scores[0])) or (res_pred == m_res_pred)
# print(
# f'pred: {res_pred:.3f}. m_pred: {m_res_pred:.3f}, diff: {res_pred - m_res_pred:.3f} scorediff: {pred_avg_score - m_scores[0]:.3f} better: {better}'
# )
# print(
# f'm_pred: {m_res_pred}'
# )
mean_res_pred = {}
mean_res_ideal = {}
for k in m_pred_accs[0].keys():
mean_res_pred[k] = np.mean([x[k] for x in m_pred_accs])
mean_res_ideal[k] = np.mean([x[k] for x in m_ideal_accs])
print(mean_res_pred)
print(mean_res_ideal)
# print(f'mean: {np.mean(m_pred_accs):4f}, std_err: {np.std(m_pred_accs) / np.sqrt(len(m_pred_accs)):4f}')
# print(f'ideal_mean: {np.mean(m_ideal_accs):4f}, ideal_std_err: {np.std(m_ideal_accs) / np.sqrt(len(m_ideal_accs)):4f}')
plt.clf()
print('plotting...')
pc.plot_roll(data[i])
plt.figure(2)
plt.scatter([x[0] for x in mixed_true], [x[1] for x in mixed_true], facecolors='none', edgecolors='k', s=80)
plt.scatter([x[0] for x in m_ideal_predictions], [x[1] for x in m_ideal_predictions], marker='o')
plt.scatter([x[0] for x in m_best_predictions], [x[1] for x in m_best_predictions], marker='s', s=30)
# plt.plot(acc['F1'])
plt.legend(['truth', 'ideal', 'predicted'])
plt.show()