A drop-in replacement for dplyr, powered by DuckDB for speed.
dplyr is the grammar of data manipulation in the tidyverse. The duckplyr package will run all of your existing dplyr code with identical results, using DuckDB where possible to compute the results faster. In addition, you can analyze larger-than-memory datasets straight from files on your disk or from the web.
If you are new to dplyr, the best place to start is the data transformation chapter in R for Data Science.
Install duckplyr from CRAN with:
install.packages("duckplyr")
You can also install the development version of duckplyr from R-universe:
install.packages("duckplyr", repos = c("https://tidyverse.r-universe.dev", "https://cloud.r-project.org"))
Or from GitHub with:
# install.packages("pak")
pak::pak("tidyverse/duckplyr")
Calling library(duckplyr)
overwrites dplyr methods, enabling duckplyr for the entire session.
library(conflicted)
library(duckplyr)
#> Loading required package: dplyr
#> �[1m�[22m�[32m✔�[39m Overwriting �[34mdplyr�[39m methods with �[34mduckplyr�[39m methods.
#> �[36mℹ�[39m Turn off with `duckplyr::methods_restore()`.
conflict_prefer("filter", "dplyr", quiet = TRUE)
The following code aggregates the inflight delay by year and month for the first half of the year.
We use a variant of the nycflights13::flights
dataset, where the timezone has been set to UTC to work around a current limitation of duckplyr, see vignette("limits")
.
flights_df()
#> �[38;5;246m# A tibble: 336,776 × 19�[39m
#> �[1myear�[22m �[1mmonth�[22m �[1mday�[22m �[1mdep_time�[22m �[1msched_d…¹�[22m �[1mdep_d…²�[22m �[1marr_t…³�[22m �[1msched…⁴�[22m �[1marr_d…⁵�[22m
#> �[3m�[38;5;246m<int>�[39m�[23m �[3m�[38;5;246m<int>�[39m�[23m �[3m�[38;5;246m<int>�[39m�[23m �[3m�[38;5;246m<int>�[39m�[23m �[3m�[38;5;246m<int>�[39m�[23m �[3m�[38;5;246m<dbl>�[39m�[23m �[3m�[38;5;246m<int>�[39m�[23m �[3m�[38;5;246m<int>�[39m�[23m �[3m�[38;5;246m<dbl>�[39m�[23m
#> �[38;5;250m 1�[39m �[4m2�[24m013 1 1 517 515 2 830 819 11
#> �[38;5;250m 2�[39m �[4m2�[24m013 1 1 533 529 4 850 830 20
#> �[38;5;250m 3�[39m �[4m2�[24m013 1 1 542 540 2 923 850 33
#> �[38;5;250m 4�[39m �[4m2�[24m013 1 1 544 545 -�[31m1�[39m �[4m1�[24m004 �[4m1�[24m022 -�[31m18�[39m
#> �[38;5;250m 5�[39m �[4m2�[24m013 1 1 554 600 -�[31m6�[39m 812 837 -�[31m25�[39m
#> �[38;5;250m 6�[39m �[4m2�[24m013 1 1 554 558 -�[31m4�[39m 740 728 12
#> �[38;5;250m 7�[39m �[4m2�[24m013 1 1 555 600 -�[31m5�[39m 913 854 19
#> �[38;5;250m 8�[39m �[4m2�[24m013 1 1 557 600 -�[31m3�[39m 709 723 -�[31m14�[39m
#> �[38;5;250m 9�[39m �[4m2�[24m013 1 1 557 600 -�[31m3�[39m 838 846 -�[31m8�[39m
#> �[38;5;250m10�[39m �[4m2�[24m013 1 1 558 600 -�[31m2�[39m 753 745 8
#> �[38;5;246m# ℹ 336,766 more rows�[39m
#> �[38;5;246m# ℹ abbreviated names: ¹sched_dep_time, ²dep_delay, ³arr_time,�[39m
#> �[38;5;246m# ⁴sched_arr_time, ⁵arr_delay�[39m
#> �[38;5;246m# ℹ 10 more variables: �[1mcarrier�[22m <chr>, �[1mflight�[22m <int>, �[1mtailnum�[22m <chr>,�[39m
#> �[38;5;246m# �[1morigin�[22m <chr>, �[1mdest�[22m <chr>, �[1mair_time�[22m <dbl>, �[1mdistance�[22m <dbl>,�[39m
#> �[38;5;246m# �[1mhour�[22m <dbl>, �[1mminute�[22m <dbl>, �[1mtime_hour�[22m <dttm>�[39m
out <-
flights_df() |>
filter(!is.na(arr_delay), !is.na(dep_delay)) |>
mutate(inflight_delay = arr_delay - dep_delay) |>
summarize(
.by = c(year, month),
mean_inflight_delay = mean(inflight_delay),
median_inflight_delay = median(inflight_delay),
) |>
filter(month <= 6)
The result is a plain tibble:
class(out)
#> [1] "tbl_df" "tbl" "data.frame"
Nothing has been computed yet. Querying the number of rows, or a column, starts the computation:
out$month
#> [1] 1 2 3 4 5 6
Note that, unlike dplyr, the results are not ordered, see ?config
for details.
However, once materialized, the results are stable:
out
#> �[38;5;246m# A tibble: 6 × 4�[39m
#> �[1myear�[22m �[1mmonth�[22m �[1mmean_inflight_delay�[22m �[1mmedian_inflight_delay�[22m
#> �[3m�[38;5;246m<int>�[39m�[23m �[3m�[38;5;246m<int>�[39m�[23m �[3m�[38;5;246m<dbl>�[39m�[23m �[3m�[38;5;246m<dbl>�[39m�[23m
#> �[38;5;250m1�[39m �[4m2�[24m013 1 -�[31m3�[39m�[31m.�[39m�[31m86�[39m -�[31m5�[39m
#> �[38;5;250m2�[39m �[4m2�[24m013 2 -�[31m5�[39m�[31m.�[39m�[31m15�[39m -�[31m6�[39m
#> �[38;5;250m3�[39m �[4m2�[24m013 3 -�[31m7�[39m�[31m.�[39m�[31m36�[39m -�[31m9�[39m
#> �[38;5;250m4�[39m �[4m2�[24m013 4 -�[31m2�[39m�[31m.�[39m�[31m67�[39m -�[31m5�[39m
#> �[38;5;250m5�[39m �[4m2�[24m013 5 -�[31m9�[39m�[31m.�[39m�[31m37�[39m -�[31m10�[39m
#> �[38;5;250m6�[39m �[4m2�[24m013 6 -�[31m4�[39m�[31m.�[39m�[31m24�[39m -�[31m7�[39m
If a computation is not supported by DuckDB, duckplyr will automatically fall back to dplyr.
flights_df() |>
summarize(
.by = origin,
dest = paste(sort(unique(dest)), collapse = " ")
)
#> �[38;5;246m# A tibble: 3 × 2�[39m
#> �[1morigin�[22m �[1mdest�[22m
#> �[3m�[38;5;246m<chr>�[39m�[23m �[3m�[38;5;246m<chr>�[39m�[23m
#> �[38;5;250m1�[39m EWR ALB ANC ATL AUS AVL BDL BNA BOS BQN BTV BUF BWI BZN CAE CHS C…
#> �[38;5;250m2�[39m LGA ATL AVL BGR BHM BNA BOS BTV BUF BWI CAE CAK CHO CHS CLE CLT C…
#> �[38;5;250m3�[39m JFK ABQ ACK ATL AUS BHM BNA BOS BQN BTV BUF BUR BWI CHS CLE CLT C…
Restart R, or call duckplyr::methods_restore()
to revert to the default dplyr implementation.
duckplyr::methods_restore()
#> �[1m�[22m�[36mℹ�[39m Restoring �[34mdplyr�[39m methods.
An extended variant of the nycflights13::flights
dataset is also available for download as Parquet files.
year <- 2022:2024
base_url <- "https://blobs.duckdb.org/flight-data-partitioned/"
files <- paste0("Year=", year, "/data_0.parquet")
urls <- paste0(base_url, files)
tibble(urls)
#> �[38;5;246m# A tibble: 3 × 1�[39m
#> �[1murls�[22m
#> �[3m�[38;5;246m<chr>�[39m�[23m
#> �[38;5;250m1�[39m https://blobs.duckdb.org/flight-data-partitioned/Year=2022/data_0.pa…
#> �[38;5;250m2�[39m https://blobs.duckdb.org/flight-data-partitioned/Year=2023/data_0.pa…
#> �[38;5;250m3�[39m https://blobs.duckdb.org/flight-data-partitioned/Year=2024/data_0.pa…
Using the httpfs DuckDB extension, we can query these files directly from R, without even downloading them first.
db_exec("INSTALL httpfs")
db_exec("LOAD httpfs")
flights <- read_parquet_duckdb(urls)
Like with local data frames, queries on the remote data are executed lazily.
Unlike with local data frames, the default is to disallow automatic materialization if the result is too large in order to protect memory: the results are not materialized until explicitly requested, with a collect()
call for instance.
nrow(flights)
#> Error: Materialization would result in 9091 rows, which exceeds the limit of 9090. Use collect() or as_tibble() to materialize.
For printing, only the first few rows of the result are fetched.
flights
#> �[38;5;246m# A duckplyr data frame: 110 variables�[39m
#> �[1mYear�[22m �[1mQuarter�[22m �[1mMonth�[22m �[1mDayofMonth�[22m �[1mDayOfWeek�[22m �[1mFlightDate�[22m �[1mReport…¹�[22m �[1mDOT_I…²�[22m
#> �[3m�[38;5;246m<dbl>�[39m�[23m �[3m�[38;5;246m<dbl>�[39m�[23m �[3m�[38;5;246m<dbl>�[39m�[23m �[3m�[38;5;246m<dbl>�[39m�[23m �[3m�[38;5;246m<dbl>�[39m�[23m �[3m�[38;5;246m<date>�[39m�[23m �[3m�[38;5;246m<chr>�[39m�[23m �[3m�[38;5;246m<dbl>�[39m�[23m
#> �[38;5;250m 1�[39m �[4m2�[24m022 1 1 14 5 2022-01-14 YX �[4m2�[24m�[4m0�[24m452
#> �[38;5;250m 2�[39m �[4m2�[24m022 1 1 15 6 2022-01-15 YX �[4m2�[24m�[4m0�[24m452
#> �[38;5;250m 3�[39m �[4m2�[24m022 1 1 16 7 2022-01-16 YX �[4m2�[24m�[4m0�[24m452
#> �[38;5;250m 4�[39m �[4m2�[24m022 1 1 17 1 2022-01-17 YX �[4m2�[24m�[4m0�[24m452
#> �[38;5;250m 5�[39m �[4m2�[24m022 1 1 18 2 2022-01-18 YX �[4m2�[24m�[4m0�[24m452
#> �[38;5;250m 6�[39m �[4m2�[24m022 1 1 19 3 2022-01-19 YX �[4m2�[24m�[4m0�[24m452
#> �[38;5;250m 7�[39m �[4m2�[24m022 1 1 20 4 2022-01-20 YX �[4m2�[24m�[4m0�[24m452
#> �[38;5;250m 8�[39m �[4m2�[24m022 1 1 21 5 2022-01-21 YX �[4m2�[24m�[4m0�[24m452
#> �[38;5;250m 9�[39m �[4m2�[24m022 1 1 22 6 2022-01-22 YX �[4m2�[24m�[4m0�[24m452
#> �[38;5;250m10�[39m �[4m2�[24m022 1 1 23 7 2022-01-23 YX �[4m2�[24m�[4m0�[24m452
#> �[38;5;246m# ℹ more rows�[39m
#> �[38;5;246m# ℹ abbreviated names: ¹Reporting_Airline, ²DOT_ID_Reporting_Airline�[39m
#> �[38;5;246m# ℹ 102 more variables: �[1mIATA_CODE_Reporting_Airline�[22m <chr>,�[39m
#> �[38;5;246m# �[1mTail_Number�[22m <chr>, �[1mFlight_Number_Reporting_Airline�[22m <dbl>,�[39m
#> �[38;5;246m# �[1mOriginAirportID�[22m <dbl>, �[1mOriginAirportSeqID�[22m <dbl>,�[39m
#> �[38;5;246m# �[1mOriginCityMarketID�[22m <dbl>, �[1mOrigin�[22m <chr>, �[1mOriginCityName�[22m <chr>,�[39m
#> �[38;5;246m# �[1mOriginState�[22m <chr>, �[1mOriginStateFips�[22m <chr>, �[1mOriginStateName�[22m <chr>,�[39m
#> �[38;5;246m# �[1mOriginWac�[22m <dbl>, �[1mDestAirportID�[22m <dbl>, �[1mDestAirportSeqID�[22m <dbl>,�[39m
#> �[38;5;246m# �[1mDestCityMarketID�[22m <dbl>, �[1mDest�[22m <chr>, �[1mDestCityName�[22m <chr>,�[39m
#> �[38;5;246m# �[1mDestState�[22m <chr>, �[1mDestStateFips�[22m <chr>, �[1mDestStateName�[22m <chr>,�[39m
#> �[38;5;246m# �[1mDestWac�[22m <dbl>, �[1mCRSDepTime�[22m <chr>, �[1mDepTime�[22m <chr>, �[1mDepDelay�[22m <dbl>,�[39m
#> �[38;5;246m# �[1mDepDelayMinutes�[22m <dbl>, �[1mDepDel15�[22m <dbl>, …�[39m
flights |>
count(Year)
#> �[38;5;246m# A duckplyr data frame: 2 variables�[39m
#> �[1mYear�[22m �[1mn�[22m
#> �[3m�[38;5;246m<dbl>�[39m�[23m �[3m�[38;5;246m<int>�[39m�[23m
#> �[38;5;250m1�[39m �[4m2�[24m022 6�[4m7�[24m�[4m2�[24m�[4m9�[24m125
#> �[38;5;250m2�[39m �[4m2�[24m023 6�[4m8�[24m�[4m4�[24m�[4m7�[24m899
#> �[38;5;250m3�[39m �[4m2�[24m024 3�[4m4�[24m�[4m6�[24m�[4m1�[24m319
Complex queries can be executed on the remote data. Note how only the relevant columns are fetched and the 2024 data isn't even touched, as it's not needed for the result.
out <-
flights |>
mutate(InFlightDelay = ArrDelay - DepDelay) |>
summarize(
.by = c(Year, Month),
MeanInFlightDelay = mean(InFlightDelay, na.rm = TRUE),
MedianInFlightDelay = median(InFlightDelay, na.rm = TRUE),
) |>
filter(Year < 2024)
out |>
explain()
#> ┌---------------------------┐
#> │ HASH_GROUP_BY │
#> │ -------------------- │
#> │ Groups: │
#> │ #0 │
#> │ #1 │
#> │ │
#> │ Aggregates: │
#> │ mean(#2) │
#> │ median(#3) │
#> │ │
#> │ ~6729125 Rows │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ PROJECTION │
#> │ -------------------- │
#> │ Year │
#> │ Month │
#> │ InFlightDelay │
#> │ InFlightDelay │
#> │ │
#> │ ~13458250 Rows │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ PROJECTION │
#> │ -------------------- │
#> │ Year │
#> │ Month │
#> │ InFlightDelay │
#> │ │
#> │ ~13458250 Rows │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ READ_PARQUET │
#> │ -------------------- │
#> │ Function: │
#> │ READ_PARQUET │
#> │ │
#> │ Projections: │
#> │ Year │
#> │ Month │
#> │ DepDelay │
#> │ ArrDelay │
#> │ │
#> │ File Filters: │
#> │ (CAST(Year AS DOUBLE) < │
#> │ 2024.0) │
#> │ │
#> │ Scanning Files: 2/3 │
#> │ │
#> │ ~13458250 Rows │
#> └---------------------------┘
out |>
print() |>
system.time()
#> �[38;5;246m# A duckplyr data frame: 4 variables�[39m
#> �[1mYear�[22m �[1mMonth�[22m �[1mMeanInFlightDelay�[22m �[1mMedianInFlightDelay�[22m
#> �[3m�[38;5;246m<dbl>�[39m�[23m �[3m�[38;5;246m<dbl>�[39m�[23m �[3m�[38;5;246m<dbl>�[39m�[23m �[3m�[38;5;246m<dbl>�[39m�[23m
#> �[38;5;250m 1�[39m �[4m2�[24m022 11 -�[31m5�[39m�[31m.�[39m�[31m21�[39m -�[31m7�[39m
#> �[38;5;250m 2�[39m �[4m2�[24m023 11 -�[31m7�[39m�[31m.�[39m�[31m10�[39m -�[31m8�[39m
#> �[38;5;250m 3�[39m �[4m2�[24m022 8 -�[31m5�[39m�[31m.�[39m�[31m27�[39m -�[31m7�[39m
#> �[38;5;250m 4�[39m �[4m2�[24m023 4 -�[31m4�[39m�[31m.�[39m�[31m54�[39m -�[31m6�[39m
#> �[38;5;250m 5�[39m �[4m2�[24m022 7 -�[31m5�[39m�[31m.�[39m�[31m13�[39m -�[31m7�[39m
#> �[38;5;250m 6�[39m �[4m2�[24m022 4 -�[31m4�[39m�[31m.�[39m�[31m88�[39m -�[31m6�[39m
#> �[38;5;250m 7�[39m �[4m2�[24m023 8 -�[31m5�[39m�[31m.�[39m�[31m73�[39m -�[31m7�[39m
#> �[38;5;250m 8�[39m �[4m2�[24m023 7 -�[31m4�[39m�[31m.�[39m�[31m47�[39m -�[31m7�[39m
#> �[38;5;250m 9�[39m �[4m2�[24m022 2 -�[31m6�[39m�[31m.�[39m�[31m52�[39m -�[31m8�[39m
#> �[38;5;250m10�[39m �[4m2�[24m023 5 -�[31m6�[39m�[31m.�[39m�[31m17�[39m -�[31m7�[39m
#> �[38;5;246m# ℹ more rows�[39m
#> user system elapsed
#> 1.145 0.455 9.402
Over 10M rows analyzed in about 10 seconds over the internet, that's not bad. Of course, working with Parquet, CSV, or JSON files downloaded locally is possible as well.
For full compatibility, na.rm = FALSE
by default in the aggregation functions:
flights |>
summarize(mean(ArrDelay - DepDelay))
#> �[38;5;246m# A duckplyr data frame: 1 variable�[39m
#> �[1m`mean(ArrDelay - DepDelay)`�[22m
#> �[3m�[38;5;246m<dbl>�[39m�[23m
#> �[38;5;250m1�[39m �[31mNA�[39m
-
vignette("large")
: Tools for working with large data -
vignette("prudence")
: How duckplyr can help protect memory when working with large data -
vignette("fallback")
: How the fallback to dplyr works internally -
vignette("limits")
: Translation of dplyr employed by duckplyr, and current limitations -
vignette("developers")
: Using duckplyr for individual data frames and in other packages -
vignette("telemetry")
: Telemetry in duckplyr
If you encounter a clear bug, please file an issue with a minimal reproducible example on GitHub. For questions and other discussion, please use forum.posit.co.
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.