You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
model =IMODE.OriginalIMODE(epoch=1000, pop_size=50, memory_size=5, archive_size=20)
2648
+
2558
2649
2559
2650
```
2560
2651
@@ -2796,6 +2887,7 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
2796
2887
2797
2888
***AO - Aquila Optimizer**
2798
2889
***OriginalAO**: Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-qaness, M. A., & Gandomi, A. H. (2021). Aquila Optimizer: A novel meta-heuristic optimization Algorithm. Computers & Industrial Engineering, 157, 107250.
2890
+
***AAO**: Al-Selwi, S. M., Hassan, M. F., Abdulkadir, S. J., Ragab, M. G., Alqushaibi, A., & Sumiea, E. H. (2024). Smart grid stability prediction using adaptive aquila optimizer and ensemble stacked bilstm. Results in Engineering, 24, 103261.
***OriginalAVOA**: Abdollahzadeh, B., Gharehchopogh, F. S., & Mirjalili, S. (2021). African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering, 158, 107408.
@@ -2806,6 +2898,8 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
2806
2898
***ARO - Artificial Rabbits Optimization**:
2807
2899
***OriginalARO**: Wang, L., Cao, Q., Zhang, Z., Mirjalili, S., & Zhao, W. (2022). Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 114, 105082.
2808
2900
2901
+
***AFT - Ali baba and the Forty Thieves**:
2902
+
***OriginalAFT**: Braik, M., Ryalat, M. H., & Al-Zoubi, H. (2022). A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Computing and Applications, 34(1), 409-455.
2809
2903
2810
2904
2811
2905
### B
@@ -2876,6 +2970,10 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
2876
2970
***CSA - Circle Search Algorithm**
2877
2971
***OriginalCSA**: Qais, M. H., Hasanien, H. M., Turky, R. A., Alghuwainem, S., Tostado-Véliz, M., & Jurado, F. (2022). Circle Search Algorithm: A Geometry-Based Metaheuristic Optimization Algorithm. Mathematics, 10(10), 1626.
2878
2972
2973
+
***CDDO - Child Drawing Development Optimization**
2974
+
***OriginalCDDO**: Abdulhameed, S., Rashid, T.A. Child Drawing Development Optimization Algorithm Based on Child’s Cognitive Development. Arab J Sci Eng 47, 1337–1351 (2022). https://doi.org/10.1007/s13369-021-05928-6
2975
+
2976
+
2879
2977
### D
2880
2978
2881
2979
***DE - Differential Evolution**
@@ -2924,6 +3022,10 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
2924
3022
***ESO - Electrical Storm Optimization** .
2925
3023
***OriginalESO**: Soto Calvo, M., & Lee, H. S. (2025). Electrical Storm Optimization (ESO) Algorithm: Theoretical Foundations, Analysis, and Application to Engineering Problems. Machine Learning and Knowledge Extraction, 7(1), 24. https://doi.org/10.3390/make7010024
2926
3024
3025
+
***EPC - Emperor Penguins Colony** .
3026
+
***DevEPC**: Harifi, S., Khalilian, M., Mohammadzadeh, J. and Ebrahimnejad, S., 2019. Emperor Penguins Colony: a new metaheuristic algorithm for optimization. Evolutionary intelligence, 12(2), pp.211-226.
3027
+
3028
+
2927
3029
### F
2928
3030
2929
3031
***FFA - Firefly Algorithm**
@@ -2940,6 +3042,9 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
2940
3042
***BaseFOA**: The developed version
2941
3043
***WhaleFOA**: Fan, Y., Wang, P., Heidari, A. A., Wang, M., Zhao, X., Chen, H., & Li, C. (2020). Boosted hunting-based fruit fly optimization and advances in real-world problems. Expert Systems with Applications, 159, 113502.
2942
3044
3045
+
***FDO - Fitness Dependent Optimizer**
3046
+
***OriginalFDO**: Abdullah, J. M., & Ahmed, T. (2019). Fitness dependent optimizer: inspired by the bee swarming reproductive process. IEEe Access, 7, 43473-43486.
***BaseFBIO**: Fathy, A., Rezk, H. and Alanazi, T.M., 2021. Recent approach of forensic-based investigation algorithm for optimizing fractional order PID-based MPPT with proton exchange membrane fuel cell.IEEE Access,9, pp.18974-18992.
@@ -3019,6 +3124,9 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
3019
3124
***ICA - Imperialist Competitive Algorithm**
3020
3125
***OriginalICA**: Atashpaz-Gargari, E., & Lucas, C. (2007, September). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation (pp. 4661-4667). Ieee.
***OriginalIMODE**: Sallam, K. M., Elsayed, S. M., Chakrabortty, R. K., & Ryan, M. J. (2020, July). Improved multi-operator differential evolution algorithm for solving unconstrained problems. In 2020 IEEE congress on evolutionary computation (CEC) (pp. 1-8). IEEE.
3129
+
3022
3130
***INFO - weIghted meaN oF vectOrs**:
3023
3131
***OriginalINFO**: Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079.
3024
3132
@@ -3033,6 +3141,9 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
***OriginalLSHADEcnEpSin**: Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2017, June). Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 372-379). IEEE.
3146
+
3036
3147
***LCO - Life Choice-based Optimization**
3037
3148
***OriginalLCO**: Khatri, A., Gaba, A., Rana, K. P. S., & Kumar, V. (2019). A novel life choice-based optimizer. Soft Computing, 1-21.
3038
3149
***BaseLCO**: The developed version
@@ -3115,6 +3226,9 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
3115
3226
***SSpiderO - Social Spider Optimization**
3116
3227
***OriginalSSpiderO**: Cuevas, E., Cienfuegos, M., ZaldíVar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, 40(16), 6374-6384.
3117
3228
3229
+
***SMO - Spider Monkey Optimization**
3230
+
***DevSMO**: Bansal, J. C., Sharma, H., Jadon, S. S., & Clerc, M. (2014). Spider monkey optimization algorithm for numerical optimization. Memetic computing, 6(1), 31-47.
3231
+
3118
3232
***SOS - Symbiotic Organisms Search**:
3119
3233
***OriginalSOS**: Cheng, M. Y., & Prayogo, D. (2014). Symbiotic organisms search: a new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112.
3120
3234
@@ -3158,6 +3272,9 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
3158
3272
***OriginalSOA**: Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-based systems, 165, 169-196.
3159
3273
***DevSOA**: The developed version
3160
3274
3275
+
***Squirrel Search Algorithm**
3276
+
***OriginalSquirrelSA**: Jain, M., Singh, V., & Rani, A. (2019). A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm and evolutionary computation, 44, 148-175.
3277
+
3161
3278
***SMA - Slime Mould Algorithm**
3162
3279
***OriginalSMA**: Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems.
0 commit comments