Skip to content

Commit e114d73

Browse files
committed
Update README
1 parent e80675a commit e114d73

File tree

1 file changed

+120
-3
lines changed

1 file changed

+120
-3
lines changed

README.md

Lines changed: 120 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ population-based metaheuristics (PBMs), which are among the most popular algorit
3030
For detailed updates in each new version, please refer to the [ChangeLog](/ChangeLog.md) file.
3131

3232
* **Free software:** MIT license
33-
* **Total algorithms**: 225 (200 official (original, hybrid, variants), 25 developed)
33+
* **Total algorithms**: 233 (206 official (original, hybrid, variants), 27 developed)
3434
* **Documentation:** https://mealpy.readthedocs.io/en/latest/
3535
* **Python versions:** >=3.8x
3636
* **Dependencies:** numpy, scipy, pandas, matplotlib
@@ -599,6 +599,15 @@ along with their syntax and common problem applications. This will guide you in
599599
<td>4</td>
600600
<td>hard*</td>
601601
</tr>
602+
<tr>
603+
<th>Swarm</th>
604+
<td>Spider Monkey Optimization</td>
605+
<td>SMO</td>
606+
<td>DevSMO</td>
607+
<td>2014</td>
608+
<td>4</td>
609+
<td>hard</td>
610+
</tr>
602611
<tr>
603612
<th>Swarm</th>
604613
<td>Grey Wolf Optimizer</td>
@@ -887,6 +896,24 @@ along with their syntax and common problem applications. This will guide you in
887896
<td>5</td>
888897
<td>easy</td>
889898
</tr>
899+
<tr>
900+
<th>Swarm</th>
901+
<td>Squirrel Search Algorithm</td>
902+
<td>SquirrelSA</td>
903+
<td>OriginalSquirrelSA</td>
904+
<td>2019</td>
905+
<td>7</td>
906+
<td>medium</td>
907+
</tr>
908+
<tr>
909+
<th>Swarm</th>
910+
<td>Fitness Dependent Optimizer</td>
911+
<td>FDO</td>
912+
<td>OriginalFDO</td>
913+
<td>2019</td>
914+
<td>3</td>
915+
<td>medium</td>
916+
</tr>
890917
<tr>
891918
<th>Swarm</th>
892919
<td>Sea Lion Optimization</td>
@@ -914,6 +941,15 @@ along with their syntax and common problem applications. This will guide you in
914941
<td>4</td>
915942
<td>medium</td>
916943
</tr>
944+
<tr>
945+
<th>Swarm</th>
946+
<td>Emperor Penguins Colony/td>
947+
<td>EPC</td>
948+
<td>DevEPC</td>
949+
<td>2019</td>
950+
<td>6</td>
951+
<td>hard</td>
952+
</tr>
917953
<tr>
918954
<th>Swarm</th>
919955
<td>Nake Mole*Rat Algorithm</td>
@@ -1022,6 +1058,15 @@ along with their syntax and common problem applications. This will guide you in
10221058
<td>2</td>
10231059
<td>easy</td>
10241060
</tr>
1061+
<tr>
1062+
<th>Swarm</th>
1063+
<td>*</td>
1064+
<td>*</td>
1065+
<td>AAO</td>
1066+
<td>2024</td>
1067+
<td>4</td>
1068+
<td>easy</td>
1069+
</tr>
10251070
<tr>
10261071
<th>Swarm</th>
10271072
<td>Hybrid Grey Wolf * Whale Optimization Algorithm</td>
@@ -1697,6 +1742,24 @@ along with their syntax and common problem applications. This will guide you in
16971742
<td>6</td>
16981743
<td>medium</td>
16991744
</tr>
1745+
<tr>
1746+
<th>Human</th>
1747+
<td>Ali baba and the Forty Thieves</td>
1748+
<td>AFT</td>
1749+
<td>OriginalAFT</td>
1750+
<td>2022</td>
1751+
<td>2</td>
1752+
<td>easy</td>
1753+
</tr>
1754+
<tr>
1755+
<th>Human</th>
1756+
<td>Child Drawing Development Optimization</td>
1757+
<td>CDDO</td>
1758+
<td>OriginalCDDO</td>
1759+
<td>2022</td>
1760+
<td>4</td>
1761+
<td>easy</td>
1762+
</tr>
17001763
<tr>
17011764
<th>Human</th>
17021765
<td>Dwarf Mongoose Optimization Algorithm</td>
@@ -2147,9 +2210,27 @@ along with their syntax and common problem applications. This will guide you in
21472210
<td>4</td>
21482211
<td>easy</td>
21492212
</tr>
2213+
<tr>
2214+
<th>SOTA</th>
2215+
<td>Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood</td>
2216+
<td>LSHADEcnEpSin</td>
2217+
<td>OriginalLSHADEcnEpSin</td>
2218+
<td>2017</td>
2219+
<td>9</td>
2220+
<td>hard</td>
2221+
</tr>
2222+
<tr>
2223+
<th>SOTA</th>
2224+
<td>Improved Multi-operator Differential Evolution Algorithm</td>
2225+
<td>IMODE</td>
2226+
<td>OriginalIMODE</td>
2227+
<td>2020</td>
2228+
<td>4</td>
2229+
<td>hard</td>
2230+
</tr>
21502231
</tbody>
21512232
</table>
2152-
2233+
()
21532234

21542235
### ❌ Warning: Algorithms Suspected of Plagiarism
21552236

@@ -2317,7 +2398,7 @@ from mealpy import SHIO, TS, HS, AEO, GCO, WCA, CRO, DE, EP, ES, FPA, MA, SHADE,
23172398
from mealpy import TDO, STO, SSpiderO, SSpiderA, SSO, SSA, SRSR, SLO, SHO, SFO, ServalOA, SeaHO, SCSO, POA
23182399

23192400
## Newly added module in version 3.0.3
2320-
from mealpy import ESO
2401+
from mealpy import ESO, EPC, SMO, AFT, CDDO, SquirrelSA, FDO, LSHADEcnEpSin, IMODE
23212402

23222403

23232404
if __name__ == "__main__":
@@ -2555,6 +2636,16 @@ if __name__ == "__main__":
25552636
model = GWO.CG_GWO(epoch=1000, pop_size=50)
25562637

25572638
model = ESO.OriginalESO(epoch=1000, pop_size=50)
2639+
model = AO.AAO(epoch=1000, pop_size=50, sharpness=10.0, sigmoid_midpoint=0.5)
2640+
model = EPC.DevEPC(epoch=1000, pop_size=50, heat_damping_factor=0.95, mutation_factor=0.1, spiral_a=1.0, spiral_b=0.5)
2641+
model = SMO.DevSMO(epoch=1000, pop_size=50, max_groups = 5, perturbation_rate = 0.7)
2642+
model = SquirrelSA.OriginalSquirrelSA(epoch=1000, pop_size=50, n_food_sources=4, predator_prob=0.1, gliding_constant=1.9, scaling_factor=18, beta=1.5)
2643+
model = AFT.OriginalAFT(epoch=1000, pop_size=50)
2644+
model = CDDO.OriginalCDDO(epoch=1000, pop_size=50, pattern_size=10, creativity_rate=0.1)
2645+
model = FDO.OriginalFDO(epoch=1000, pop_size=50, weight_factor=0.1)
2646+
model = LSHADEcnEpSin.OriginalLSHADEcnEpSin(epoch=1000, pop_size=50, miu_f = 0.5, miu_cr = 0.5, freq = 0.5, memory_size = 5, ps = 0.5, pc = 0.4, pop_size_min = 10)
2647+
model = IMODE.OriginalIMODE(epoch=1000, pop_size=50, memory_size=5, archive_size=20)
2648+
25582649

25592650
```
25602651

@@ -2796,6 +2887,7 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
27962887

27972888
* **AO - Aquila Optimizer**
27982889
* **OriginalAO**: Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-qaness, M. A., & Gandomi, A. H. (2021). Aquila Optimizer: A novel meta-heuristic optimization Algorithm. Computers & Industrial Engineering, 157, 107250.
2890+
* **AAO**: Al-Selwi, S. M., Hassan, M. F., Abdulkadir, S. J., Ragab, M. G., Alqushaibi, A., & Sumiea, E. H. (2024). Smart grid stability prediction using adaptive aquila optimizer and ensemble stacked bilstm. Results in Engineering, 24, 103261.
27992891

28002892
* **AVOA - African Vultures Optimization Algorithm**
28012893
* **OriginalAVOA**: Abdollahzadeh, B., Gharehchopogh, F. S., & Mirjalili, S. (2021). African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering, 158, 107408.
@@ -2806,6 +2898,8 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
28062898
* **ARO - Artificial Rabbits Optimization**:
28072899
* **OriginalARO**: Wang, L., Cao, Q., Zhang, Z., Mirjalili, S., & Zhao, W. (2022). Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 114, 105082.
28082900

2901+
* **AFT - Ali baba and the Forty Thieves**:
2902+
* **OriginalAFT**: Braik, M., Ryalat, M. H., & Al-Zoubi, H. (2022). A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Computing and Applications, 34(1), 409-455.
28092903

28102904

28112905
### B
@@ -2876,6 +2970,10 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
28762970
* **CSA - Circle Search Algorithm**
28772971
* **OriginalCSA**: Qais, M. H., Hasanien, H. M., Turky, R. A., Alghuwainem, S., Tostado-Véliz, M., & Jurado, F. (2022). Circle Search Algorithm: A Geometry-Based Metaheuristic Optimization Algorithm. Mathematics, 10(10), 1626.
28782972

2973+
* **CDDO - Child Drawing Development Optimization**
2974+
* **OriginalCDDO**: Abdulhameed, S., Rashid, T.A. Child Drawing Development Optimization Algorithm Based on Child’s Cognitive Development. Arab J Sci Eng 47, 1337–1351 (2022). https://doi.org/10.1007/s13369-021-05928-6
2975+
2976+
28792977
### D
28802978

28812979
* **DE - Differential Evolution**
@@ -2924,6 +3022,10 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
29243022
* **ESO - Electrical Storm Optimization** .
29253023
* **OriginalESO**: Soto Calvo, M., & Lee, H. S. (2025). Electrical Storm Optimization (ESO) Algorithm: Theoretical Foundations, Analysis, and Application to Engineering Problems. Machine Learning and Knowledge Extraction, 7(1), 24. https://doi.org/10.3390/make7010024
29263024

3025+
* **EPC - Emperor Penguins Colony** .
3026+
* **DevEPC**: Harifi, S., Khalilian, M., Mohammadzadeh, J. and Ebrahimnejad, S., 2019. Emperor Penguins Colony: a new metaheuristic algorithm for optimization. Evolutionary intelligence, 12(2), pp.211-226.
3027+
3028+
29273029
### F
29283030

29293031
* **FFA - Firefly Algorithm**
@@ -2940,6 +3042,9 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
29403042
* **BaseFOA**: The developed version
29413043
* **WhaleFOA**: Fan, Y., Wang, P., Heidari, A. A., Wang, M., Zhao, X., Chen, H., & Li, C. (2020). Boosted hunting-based fruit fly optimization and advances in real-world problems. Expert Systems with Applications, 159, 113502.
29423044

3045+
* **FDO - Fitness Dependent Optimizer**
3046+
* **OriginalFDO**: Abdullah, J. M., & Ahmed, T. (2019). Fitness dependent optimizer: inspired by the bee swarming reproductive process. IEEe Access, 7, 43473-43486.
3047+
29433048
* **FBIO - Forensic-Based Investigation Optimization**
29443049
* **OriginalFBIO**: Chou, J.S. and Nguyen, N.M., 2020. FBI inspired meta-optimization. Applied Soft Computing, p.106339.
29453050
* **BaseFBIO**: Fathy, A., Rezk, H. and Alanazi, T.M., 2021. Recent approach of forensic-based investigation algorithm for optimizing fractional order PID-based MPPT with proton exchange membrane fuel cell.IEEE Access,9, pp.18974-18992.
@@ -3019,6 +3124,9 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
30193124
* **ICA - Imperialist Competitive Algorithm**
30203125
* **OriginalICA**: Atashpaz-Gargari, E., & Lucas, C. (2007, September). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation (pp. 4661-4667). Ieee.
30213126

3127+
* **IMODE - Improved Multi-operator Differential Evolution Algorithm**:
3128+
* **OriginalIMODE**: Sallam, K. M., Elsayed, S. M., Chakrabortty, R. K., & Ryan, M. J. (2020, July). Improved multi-operator differential evolution algorithm for solving unconstrained problems. In 2020 IEEE congress on evolutionary computation (CEC) (pp. 1-8). IEEE.
3129+
30223130
* **INFO - weIghted meaN oF vectOrs**:
30233131
* **OriginalINFO**: Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079.
30243132

@@ -3033,6 +3141,9 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
30333141

30343142
### L
30353143

3144+
* **LSHADEcnEpSin - Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood**
3145+
* **OriginalLSHADEcnEpSin**: Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2017, June). Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 372-379). IEEE.
3146+
30363147
* **LCO - Life Choice-based Optimization**
30373148
* **OriginalLCO**: Khatri, A., Gaba, A., Rana, K. P. S., & Kumar, V. (2019). A novel life choice-based optimizer. Soft Computing, 1-21.
30383149
* **BaseLCO**: The developed version
@@ -3115,6 +3226,9 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
31153226
* **SSpiderO - Social Spider Optimization**
31163227
* **OriginalSSpiderO**: Cuevas, E., Cienfuegos, M., ZaldíVar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, 40(16), 6374-6384.
31173228

3229+
* **SMO - Spider Monkey Optimization**
3230+
* **DevSMO**: Bansal, J. C., Sharma, H., Jadon, S. S., & Clerc, M. (2014). Spider monkey optimization algorithm for numerical optimization. Memetic computing, 6(1), 31-47.
3231+
31183232
* **SOS - Symbiotic Organisms Search**:
31193233
* **OriginalSOS**: Cheng, M. Y., & Prayogo, D. (2014). Symbiotic organisms search: a new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112.
31203234

@@ -3158,6 +3272,9 @@ All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages
31583272
* **OriginalSOA**: Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-based systems, 165, 169-196.
31593273
* **DevSOA**: The developed version
31603274

3275+
* **Squirrel Search Algorithm**
3276+
* **OriginalSquirrelSA**: Jain, M., Singh, V., & Rani, A. (2019). A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm and evolutionary computation, 44, 148-175.
3277+
31613278
* **SMA - Slime Mould Algorithm**
31623279
* **OriginalSMA**: Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems.
31633280
* **BaseSMA**: The developed version

0 commit comments

Comments
 (0)