-
Notifications
You must be signed in to change notification settings - Fork 1
/
ZPolS.v
72 lines (65 loc) · 2.55 KB
/
ZPolS.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Require Import ZAux.
Require Import PolSBase.
Require Import PolAuxList.
Require Import PolAux.
Definition Zconvert_back (e : PExpr Z) (l : list Z) : Z :=
convert_back Z Z Z0 Zplus Zminus Zmult Z.opp (fun (x : Z) => x) l e.
Definition Zsimpl (e : PExpr Z) :=
simpl
Z Zplus Zmult Z.opp Z0 1%Z is_Z1 is_Z0 is_Zpos is_Zdiv Z.div e.
Definition Zsimpl_minus (e : PExpr Z) :=
simpl_minus
Z Zplus Zmult Z.opp Z0 1%Z is_Z1 is_Z0 is_Zpos is_Zdiv Z.div e.
Ltac zs term1 term2 :=
let term := constr:(Zminus term1 term2) in
let rfv := FV ZCst Zplus Zmult Zminus Z.opp term (@nil Z) in
let fv := Trev rfv in
let expr1 := mkPolexpr Z ZCst Zplus Zmult Zminus Z.opp term1 fv in
let expr2 := mkPolexpr Z ZCst Zplus Zmult Zminus Z.opp term2 fv in
let re := (eval vm_compute in (Zsimpl_minus (PEsub expr1 expr2))) in
let expr3 := match re with (PEsub ?X1 _) => X1 end in
let expr4 := match re with (PEsub _ ?X1) => X1 end in
let re1 := (eval vm_compute in (Zsimpl (PEsub expr1 expr3))) in
let re1' :=
(eval
unfold
Zconvert_back, convert_back, pos_nth, jump,
hd, tl in (Zconvert_back (PEadd re1 expr3) fv))
in
let re1'' := (eval lazy beta in re1') in
let re2' :=
(eval
unfold
Zconvert_back, convert_back, pos_nth, jump,
hd, tl in (Zconvert_back (PEadd re1 expr4) fv))
in
let re2'' := (eval lazy beta in re2') in
replace2_tac term1 term2 re1'' re2''; [idtac | ring | ring].
Ltac zpols :=
match goal with
| |- (?X1 = ?X2)%Z => zs X1 X2; apply Zplus_eq_compat_l
| |- (?X1 <> ?X2)%Z => zs X1 X2; apply Zplus_neg_compat_l
| |- Z.lt ?X1 ?X2 => zs X1 X2; apply Zplus_lt_compat_l
| |- Z.gt ?X1 ?X2 => zs X1 X2; apply Zplus_gt_compat_l
| |- Z.le ?X1 ?X2 => zs X1 X2; apply Zplus_le_compat_l
| |- Z.ge ?X1 ?X2 => zs X1 X2; apply Zplus_ge_compat_l
| _ => fail
end.
Ltac hyp_zpols H :=
generalize H;
let tmp := fresh "tmp" in
match (type of H) with
| (?X1 = ?X2)%Z =>
zs X1 X2; intros tmp; generalize (Zplus_reg_l _ _ _ tmp); clear H tmp; intro H
| (?X1 <> ?X2)%nat =>
zs X1 X2; intros tmp; generalize (Zplus_neg_reg_l _ _ _ tmp); clear H tmp; intro H
| Z.lt ?X1 ?X2 =>
zs X1 X2; intros tmp; generalize (Zplus_lt_reg_l _ _ _ tmp); clear H tmp; intro H
| Z.gt ?X1 ?X2 =>
zs X1 X2; intros tmp; generalize (Zplus_gt_reg_l _ _ _ tmp); clear H tmp; intro H
| Z.le ?X1 ?X2 =>
zs X1 X2; intros tmp; generalize (Zplus_le_reg_l _ _ _ tmp); clear H tmp; intro H
| Z.ge ?X1 ?X2 =>
zs X1 X2; intros tmp; generalize (Zplus_ge_reg_l _ _ _ tmp); clear H tmp; intro H
| _ => fail
end.