-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlagrange.py
221 lines (191 loc) · 6.07 KB
/
lagrange.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import sympy
import csv
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from sympy.plotting.plot import List2DSeries
from timeit import default_timer as timer
import random
matplotlib.style.use('bmh')
#seaborn-whitegrid
#fivethirtyeight
def Lagrange (Lx, Ly):
X = sympy.symbols('X')
if len(Lx) != len(Ly):
print ("Error data set")
return 1
y = 0
for i in range(len(Lx)):
t = 1
for j in range(len(Lx)):
if j != i:
t *= ((X - Lx[j]) / (Lx[i] - Lx[j]))
y += t * Ly[i]
return y
GINI_KNOWN = 0.293 # here is Croatia's gini in 2018
Lx = []
Ly = []
yPos = []
Ly.append(0.0)
with open('input_hrv.csv', 'r') as file:
reader = csv.reader(file)
for row in reader:
r = 0
for value in row:
r += 1
try:
value = float(value)
if r % 2 == 0:
Ly.append(value)
except ValueError as e:
continue
GDP = Ly[-1]
del Ly[-1]
Ly.sort()
for i in range(len(Ly)):
Lx.append(i * 10.0)
print("---------- Dependencies ----------")
print('matplotlib: {}'.format(matplotlib.__version__))
print('sympy: {}'.format(sympy.__version__))
print('numpy: {}'.format(np.__version__))
print("----------------------------------")
print("----------- INPUT DATA -----------")
print("X Data: ", Lx)
print("Y Data: ", Ly)
print("Total Income: ", GDP)
print("----------------------------------")
print("----------- SET POINTS -----------")
for i in range(len(Lx)):
yValue = (Ly[i] * 1.0) / (GDP * 1.0) * 100.0
if i != 0:
yValue += yPos[i - 1]
print("X: ", Lx[i], "Y: ", yValue)
yPos.append(yValue)
print("----------------------------------")
print("----------- INPUT DATA ------------")
print("X Vector: ", Lx)
print("Y Vector: ", yPos)
print("-----------------------------------")
X = sympy.symbols('X')
xLimit = 100
startL = timer()
MyLagrange = Lagrange(Lx, yPos)
lorenz = sympy.simplify(MyLagrange)
equality = X
areaEquality = sympy.integrate(equality, (sympy.Symbol('X'), 0, xLimit))
areaGINI = sympy.integrate(equality - lorenz, (sympy.Symbol('X'), 0, xLimit))
lagGINI = areaGINI / areaEquality
endL = timer()
timeLagrange = endL - startL
lagAccuracy = abs(100.0 - (abs(GINI_KNOWN - lagGINI) / GINI_KNOWN) * 100.0)
print("------------ LAGRANGE ------------")
print("Lagrange Polynomial:", lorenz)
print("Object Type:", type(lorenz))
print("Enclosed Area:", areaGINI)
print("Equality Area:", areaEquality)
print("GINI Coefficient:", lagGINI)
print("Time:", timeLagrange, "seconds")
print("Accuracy: {:0.2f} %".format(lagAccuracy))
print("----------------------------------")
print("+++++++++++++ INTEGRATION ++++++++++++")
delta = 0.005
acc = 0.0
accArea = 0.0
eqArea = 0.0
startR = timer()
while acc <= xLimit:
acc += delta
eval = acc - (delta / 2.0)
heightEq = equality.evalf(subs={X:eval})
heightLorenz = lorenz.evalf(subs={X:eval})
eqArea += delta * (heightEq)
accArea += delta * (heightEq - heightLorenz)
endR = timer()
timeRiemann = endR - startR
rieGINI = accArea / eqArea
rieAccuracy = abs(100.0 - (abs(GINI_KNOWN - rieGINI) / GINI_KNOWN) * 100.0)
print("------------ RIEMANN ------------")
print("Enclosed Area:", accArea)
print("Equality Area:", eqArea)
print("GINI Coefficient:", rieGINI)
print("Time:", timeRiemann, "seconds")
print("Accuracy: {:0.2f} %".format(rieAccuracy))
print("----------------------------------")
tests = 50000
inside = 0.0
areaDomain = 100 * 100
insidePoints = []
outsidePoints = []
# For Monte Carlo visualization
'''
xx = np.linspace(0, 100, 1000)
yy = sympy.lambdify(X, [equality, lorenz])(xx)
plt.plot(xx, np.transpose(yy))
'''
startMC = timer()
for i in range(tests):
xCoord = random.uniform(0, 100)
yCoord = random.uniform(0, 100)
if yCoord <= equality.evalf(subs={X:xCoord}) and yCoord >= lorenz.evalf(subs={X:xCoord}):
inside += 1.0
point = [xCoord, yCoord]
insidePoints.append(point)
#plt.plot(point[0], point[1], color='red', marker='o')
'''
# For Monte Carlo visualization
else:
point = [xCoord, yCoord]
outsidePoints.append(point)
plt.plot(point[0], point[1], color='blue', marker='o')
if i == 10 or i == 50 or i == 100 or i == 500 or i == 1000 or i == 5000:
plt.title('T = {}'.format(i))
plt.savefig("T_{}.png".format(i),bbox_inches='tight')
'''
endMC = timer()
timeMC = endMC - startMC
MonteCarloArea = (inside / tests) * areaDomain
mcGINI = MonteCarloArea / areaEquality
mcAccuracy = abs(100.0 - (abs(GINI_KNOWN - mcGINI) / GINI_KNOWN) * 100.0)
print("------------ MONTE CARLO ------------")
print("Enclosed Area:", MonteCarloArea)
print("GINI Coefficient:", mcGINI)
print("Time:", timeMC, "seconds")
print("Accuracy: {:0.2f} %".format(mcAccuracy))
print("------------------------------------")
# Plots
p1 = sympy.plotting.plot(lorenz, equality, (X, 0, xLimit), ylim=[0,100],show=False)
p1.title = "Lagrange Interpolation for GINI Approximation"
p1[0].line_color='r'
p2 = sympy.plotting.plot(lorenz, equality, (X, 0, xLimit), ylim=[0,100],show=False)
p2.title = "Lagrange Interpolation vs. Data Set Comparison"
p2.append(List2DSeries(Lx, yPos))
p2[2].line_color=(0.5, 0.5, 0.5)
p2[0].line_color='r'
# Time Performance visualization
finalTime = [timeLagrange, timeMC, timeRiemann]
labels = ["Python", "Monte Carlo", "Riemann"]
index = np.arange(len(labels))
viridis = matplotlib.cm.get_cmap('viridis', 5)
bars = plt.bar(index, finalTime, color=viridis.colors[2])
plt.xlabel('Method for Polynomial Integration', fontsize=13)
plt.ylabel('Time (s)', fontsize=13)
plt.xticks(index, labels, fontsize=8, rotation=0)
plt.title('Time Performance Comparison')
'''
# For Riemann visualization
xx = np.linspace(0, 100, 1000)
yy = sympy.lambdify(X, [equality, lorenz])(xx)
plt.plot(xx, np.transpose(yy))
f = sympy.lambdify(X, lorenz)
a = 0; b = 100; N = 10
n = 10
x = np.linspace(a,b,N+1)
y = f(x)
x_mid = (x[:-1] + x[1:])/2 # midpoints
y_mid = f(x_mid)
plt.bar(x_mid,y_mid,width=(b-a)/N,alpha=0.2,edgecolor='b')
#plt.title('Midpoint Riemann Sum, N = {}'.format(N))
'''
p1.show()
p2.show()
plt.show()