@@ -28,9 +28,63 @@ $$ {\mathcal I} := \bbI[ \bigl(\sum_{i=1}^m X_{i,j}\bigr)_{j =1}^{m}
28
28
lemma mutual_information_le {G Ωₒ : Type u} [MeasureableFinGroup G] [MeasureSpace Ωₒ]
29
29
(p : multiRefPackage G Ωₒ) (Ω : Type u) [hΩ : MeasureSpace Ω] (X : ∀ i, Ω → G)
30
30
(h_indep : iIndepFun X)
31
- (h_min : multiTauMinimizes p (fun _ ↦ Ω) (fun _ ↦ hΩ) X) (Ω' : Type *) [MeasureSpace Ω']
31
+ (h_min : multiTauMinimizes p (fun _ ↦ Ω) (fun _ ↦ hΩ) X) (Ω' : Type *) [hΩ': MeasureSpace Ω']
32
+ [IsProbabilityMeasure hΩ'.volume]
32
33
(X' : Fin p.m × Fin p.m → Ω' → G) (h_indep': iIndepFun X')
33
34
(hperm : ∀ j, ∃ e : Fin p.m ≃ Fin p.m, IdentDistrib (fun ω ↦ (fun i ↦ X' (i, j) ω))
34
35
(fun ω ↦ (fun i ↦ X (e i) ω))) :
35
36
I[ fun ω ↦ ( fun j ↦ ∑ i, X' (i, j) ω) : fun ω ↦ ( fun i ↦ ∑ j, X' (i, j) ω) |
36
- fun ω ↦ ∑ i, ∑ j, X' (i, j) ω ] ≤ 4 * p.m^2 * p.η * D[ X; (fun _ ↦ hΩ)] := sorry
37
+ fun ω ↦ ∑ i, ∑ j, X' (i, j) ω ] ≤ 2 * p.m * (2 *p.m + 1 ) * p.η * D[ X; (fun _ ↦ hΩ)] := by
38
+ have hm := p.hm
39
+ set I₀ := I[ fun ω ↦ ( fun j ↦ ∑ i, X' (i, j) ω) : fun ω ↦ ( fun i ↦ ∑ j, X' (i, j) ω) |
40
+ fun ω ↦ ∑ i, ∑ j, X' (i, j) ω ]
41
+ set k := D[X ; fun x ↦ hΩ]
42
+ set one : Fin p.m := ⟨ 1 , by omega ⟩
43
+ set last : Fin p.m := ⟨ p.m-1 , by omega ⟩
44
+ set column : Fin p.m → Fin p.m → Ω' → G := fun j i ω ↦ X' (i, j) ω
45
+ set V : Fin p.m → Ω' → G := fun i ω ↦ ∑ j, X' (i, j) ω
46
+ set S : Fin p.m → Fin p.m → Ω' → G := fun i j ↦ ∑ k ∈ .Ici j, X' (i, k)
47
+ set A : Fin p.m → ℝ := fun j ↦ D[ column j; fun _ ↦ hΩ']
48
+ - D[ column j | fun i ↦ S i j; fun _ ↦ hΩ']
49
+ set B : ℝ := D[ column last; fun _ ↦ hΩ'] - D[ fun j ω ↦ ∑ i, X' (i, j) ω; fun _ ↦ hΩ']
50
+
51
+ have h1 : I₀ ≤ ∑ j ∈ .Iio last, A j + B := by
52
+ sorry
53
+
54
+ have h2 {j : Fin p.m} (hj: j ∈ Finset.Iio last)
55
+ : A j ≤ p.η * ∑ i, d[ X' (i,j) # X' (i,j) | S i j ] := by
56
+ sorry
57
+
58
+ have h3 : B ≤ p.η * ∑ i, d[ X' (i, last) # V i ] := by
59
+ sorry
60
+
61
+ have h4 (i: Fin p.m) {j : Fin p.m} (hj: j ∈ Finset.Iio last) :
62
+ d[ X' (i,j) # X' (i,j) | S i j ] ≤ d[ X' (i,j) # X' (i,j) ]
63
+ + (H[S i j] - H[S i (j+one)]) / 2 := by
64
+ sorry
65
+
66
+ have h5 (i: Fin p.m) :
67
+ ∑ j ∈ Finset.Iio last, d[ X' (i,j) # X' (i,j) | S i j ]
68
+ ≤ ∑ j ∈ Finset.Iio last, d[ X' (i,j) # X' (i,j) ] + (H[V i] - H[X' (i, last)]) / 2 := by
69
+ sorry
70
+
71
+ have h6 (i: Fin p.m) :
72
+ d[ X' (i, last) # V i ] ≤ d[ X' (i, last) # X' (i, last) ]
73
+ + (H[V i] - H[X' (i, last)]) / 2 := by
74
+ sorry
75
+
76
+ have h7 : I₀/p.η ≤ p.m * ∑ i, d[X i # X i] + ∑ i, H[V i] - ∑ i, H[X i] := by
77
+ sorry
78
+
79
+ have h8 (i: Fin p.m) : H[V i] ≤ H[ ∑ j, X j] + ∑ j, d[X' (i,j) # X' (i,j)] := by
80
+ sorry
81
+
82
+ have h9 : ∑ i, H[V i] - ∑ i, H[X i] ≤ p.m * ∑ i, d[X i # X i] + p.m * k := by
83
+ sorry
84
+
85
+ have h10 : I₀/p.η ≤ 2 * p.m * ∑ i, d[X i # X i] + p.m * k := by linarith
86
+
87
+ have h11 : ∑ i, d[X i # X i] ≤ 2 * p.m * k := by
88
+ sorry
89
+
90
+ sorry
0 commit comments