Skip to content

Commit e133c28

Browse files
committed
start on key estimate. Discovered a typo which propagated a little downstream, now fixed.
1 parent 69fce44 commit e133c28

File tree

3 files changed

+66
-12
lines changed

3 files changed

+66
-12
lines changed

PFR/BoundingMutual.lean

Lines changed: 56 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -28,9 +28,63 @@ $$ {\mathcal I} := \bbI[ \bigl(\sum_{i=1}^m X_{i,j}\bigr)_{j =1}^{m}
2828
lemma mutual_information_le {G Ωₒ : Type u} [MeasureableFinGroup G] [MeasureSpace Ωₒ]
2929
(p : multiRefPackage G Ωₒ) (Ω : Type u) [hΩ : MeasureSpace Ω] (X : ∀ i, Ω → G)
3030
(h_indep : iIndepFun X)
31-
(h_min : multiTauMinimizes p (fun _ ↦ Ω) (fun _ ↦ hΩ) X) (Ω' : Type*) [MeasureSpace Ω']
31+
(h_min : multiTauMinimizes p (fun _ ↦ Ω) (fun _ ↦ hΩ) X) (Ω' : Type*) [hΩ': MeasureSpace Ω']
32+
[IsProbabilityMeasure hΩ'.volume]
3233
(X' : Fin p.m × Fin p.m → Ω' → G) (h_indep': iIndepFun X')
3334
(hperm : ∀ j, ∃ e : Fin p.m ≃ Fin p.m, IdentDistrib (fun ω ↦ (fun i ↦ X' (i, j) ω))
3435
(fun ω ↦ (fun i ↦ X (e i) ω))) :
3536
I[ fun ω ↦ ( fun j ↦ ∑ i, X' (i, j) ω) : fun ω ↦ ( fun i ↦ ∑ j, X' (i, j) ω) |
36-
fun ω ↦ ∑ i, ∑ j, X' (i, j) ω ] ≤ 4 * p.m^2 * p.η * D[ X; (fun _ ↦ hΩ)] := sorry
37+
fun ω ↦ ∑ i, ∑ j, X' (i, j) ω ] ≤ 2 * p.m * (2*p.m + 1) * p.η * D[ X; (fun _ ↦ hΩ)] := by
38+
have hm := p.hm
39+
set I₀ := I[ fun ω ↦ ( fun j ↦ ∑ i, X' (i, j) ω) : fun ω ↦ ( fun i ↦ ∑ j, X' (i, j) ω) |
40+
fun ω ↦ ∑ i, ∑ j, X' (i, j) ω ]
41+
set k := D[X ; fun x ↦ hΩ]
42+
set one : Fin p.m := ⟨ 1, by omega ⟩
43+
set last : Fin p.m := ⟨ p.m-1, by omega ⟩
44+
set column : Fin p.m → Fin p.m → Ω' → G := fun j i ω ↦ X' (i, j) ω
45+
set V : Fin p.m → Ω' → G := fun i ω ↦ ∑ j, X' (i, j) ω
46+
set S : Fin p.m → Fin p.m → Ω' → G := fun i j ↦ ∑ k ∈ .Ici j, X' (i, k)
47+
set A : Fin p.m → ℝ := fun j ↦ D[ column j; fun _ ↦ hΩ']
48+
- D[ column j | fun i ↦ S i j; fun _ ↦ hΩ']
49+
set B : ℝ := D[ column last; fun _ ↦ hΩ'] - D[ fun j ω ↦ ∑ i, X' (i, j) ω; fun _ ↦ hΩ']
50+
51+
have h1 : I₀ ≤ ∑ j ∈ .Iio last, A j + B := by
52+
sorry
53+
54+
have h2 {j : Fin p.m} (hj: j ∈ Finset.Iio last)
55+
: A j ≤ p.η * ∑ i, d[ X' (i,j) # X' (i,j) | S i j ] := by
56+
sorry
57+
58+
have h3 : B ≤ p.η * ∑ i, d[ X' (i, last) # V i ] := by
59+
sorry
60+
61+
have h4 (i: Fin p.m) {j : Fin p.m} (hj: j ∈ Finset.Iio last) :
62+
d[ X' (i,j) # X' (i,j) | S i j ] ≤ d[ X' (i,j) # X' (i,j) ]
63+
+ (H[S i j] - H[S i (j+one)]) / 2 := by
64+
sorry
65+
66+
have h5 (i: Fin p.m) :
67+
∑ j ∈ Finset.Iio last, d[ X' (i,j) # X' (i,j) | S i j ]
68+
≤ ∑ j ∈ Finset.Iio last, d[ X' (i,j) # X' (i,j) ] + (H[V i] - H[X' (i, last)]) / 2 := by
69+
sorry
70+
71+
have h6 (i: Fin p.m) :
72+
d[ X' (i, last) # V i ] ≤ d[ X' (i, last) # X' (i, last) ]
73+
+ (H[V i] - H[X' (i, last)]) / 2 := by
74+
sorry
75+
76+
have h7 : I₀/p.η ≤ p.m * ∑ i, d[X i # X i] + ∑ i, H[V i] - ∑ i, H[X i] := by
77+
sorry
78+
79+
have h8 (i: Fin p.m) : H[V i] ≤ H[ ∑ j, X j] + ∑ j, d[X' (i,j) # X' (i,j)] := by
80+
sorry
81+
82+
have h9 : ∑ i, H[V i] - ∑ i, H[X i] ≤ p.m * ∑ i, d[X i # X i] + p.m * k := by
83+
sorry
84+
85+
have h10 : I₀/p.η ≤ 2 * p.m * ∑ i, d[X i # X i] + p.m * k := by linarith
86+
87+
have h11 : ∑ i, d[X i # X i] ≤ 2 * p.m * k := by
88+
sorry
89+
90+
sorry

PFR/TorsionEndgame.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -60,7 +60,7 @@ lemma indep_yj (j : Fin p.m) : iIndepFun (fun i ↦ Y (i, j)) := by
6060
include h_mes h_indep hident h_min in
6161
/-- We have `I[Z_1 : Z_2 | W], I[Z_2 : Z_3 | W], I[Z_1 : Z_3 | W] ≤ 4m^2 η k`.
6262
-/
63-
lemma mutual_information_le_t_12 : I[Z1 : Z2 | W] ≤ 4 * p.m ^ 2 * p.η * k := by
63+
lemma mutual_information_le_t_12 : I[Z1 : Z2 | W] ≤ 2 * p.m * (2 * p.m + 1) * p.η * k := by
6464
have hm := p.hm
6565
let zero : Fin p.m := ⟨ 0, by linarith [hm]⟩
6666
have hindep_j (j: Fin p.m) : iIndepFun (fun i ↦ Y (i, j)) := indep_yj h_mes h_indep j
@@ -89,7 +89,7 @@ lemma torsion_mul_eq {i j:ℤ} (x:G) (h: i ≡ j [ZMOD p.m]) : i • x = j • x
8989
simp [add_smul, mul_comm, mul_zsmul, p.htorsion]
9090

9191
include h_mes h_indep hident h_min in
92-
lemma mutual_information_le_t_23 : I[Z2 : Z3 | W] ≤ 4 * p.m ^ 2 * p.η * k := by
92+
lemma mutual_information_le_t_23 : I[Z2 : Z3 | W] ≤ 2 * p.m * (2 * p.m + 1) * p.η * k := by
9393
have hm := p.hm
9494
have _ : NeZero p.m := by rw [neZero_iff]; linarith
9595
let zero : Fin p.m := ⟨ 0, by linarith [hm]⟩
@@ -140,7 +140,7 @@ lemma mutual_information_le_t_23 : I[Z2 : Z3 | W] ≤ 4 * p.m ^ 2 * p.η * k :=
140140
exact (hident (i-j) j).trans (hident (i-j) zero).symm
141141

142142
include h_mes h_indep hident h_min in
143-
lemma mutual_information_le_t_21 : I[Z1 : Z3 | W] ≤ 4 * p.m ^ 2 * p.η * k := by
143+
lemma mutual_information_le_t_21 : I[Z1 : Z3 | W] ≤ 2 * p.m * (2 * p.m + 1) * p.η * k := by
144144
have hm := p.hm
145145
have _ : NeZero p.m := by rw [neZero_iff]; linarith
146146
let zero : Fin p.m := ⟨ 0, by linarith [hm]⟩

blueprint/src/chapter/torsion.tex

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -491,7 +491,7 @@ \section{Bounding the mutual information}
491491
\]
492492
Then
493493
\begin{equation}\label{I-ineq}
494-
{\mathcal I} \leq 4 m^2 \eta k.
494+
{\mathcal I} \leq 2 m(2m+1) \eta k.
495495
\end{equation}
496496
\end{proposition}
497497

@@ -515,9 +515,9 @@ \section{Bounding the mutual information}
515515
D[ (X_{i, j})_{i = 1}^m ]= D[ (X_i)_{i=1}^m ] = k.
516516
\]
517517
Let $\sigma = \sigma_j \colon I \to I$ be a permutation such that $X_{i,j} = X_{\sigma(i)}$, and write $X'_i := X_{i,j}$ and $Y_i := X_{i,j} + \cdots + X_{i,m}$.
518-
\Cref{cond-multidist-lower-II}, we have
518+
By \Cref{cond-multidist-lower-II}, we have
519519
\begin{align}
520-
A_j & \leq \eta \sum_{i = 1}^{m-1} d[X_{i,j}; X_{i, j}|X_{i, j} + \cdots + X_{i,m}].\label{54a}
520+
A_j & \leq \eta \sum_{i = 1}^{m} d[X_{i,j}; X_{i, j}|X_{i, j} + \cdots + X_{i,m}].\label{54a}
521521
\end{align}
522522
We similarly consider $B$. By \Cref{multidist-perm} applied to the $m$-th column,
523523
\[
@@ -614,7 +614,7 @@ \section{Endgame}
614614
\]
615615
where
616616
\begin{equation}\label{t-def}
617-
t := 4m^2 \eta k.
617+
t := 2m(2m+1) \eta k.
618618
\end{equation}
619619
\end{proposition}
620620

@@ -820,7 +820,7 @@ \section{Endgame}
820820
\label{eq:delta-w}
821821
\nonumber
822822
\delta_\ast := \sum_w p_W(w) \delta_w &= \bbI[Z_1 : Z_2 \,|\, W] + \bbI[Z_1 : Z_3 \,|\, W] + \bbI[Z_2 : Z_3 \,|\, W] \\
823-
& \leq 12 m^2 \eta k
823+
& \leq 6 m (2m+1) \eta k
824824
\end{align}
825825
by \Cref{prop:52}.
826826
Write $U_w$ for the random variable guaranteed to exist by \Cref{lem:get-better},
@@ -847,10 +847,10 @@ \section{Endgame}
847847
since the terms $d[X_i; U_w]$ cancel by our choice of $\alpha$.
848848
Substituting in \Cref{xi-z2-w-dist} and~\eqref{eq:delta-w}, and using the fact that $2 + \frac{\eta}{2} < 3$, we have
849849
\[
850-
12 m^3 (2+\frac{\eta}{2}) \eta k + \eta 8(m^3-m^2) k \geq k.
850+
6 m^2 (2m+1) (2+\frac{\eta}{2}) \eta k + \eta 8(m^3-m^2) k \geq k.
851851
\]
852852
From \Cref{eta-def-multi} we have we have
853-
$$ 12 m^3 (2+\frac{\eta}{2}) \eta + \eta 8(m^3-m^2) < 1$$
853+
$$ 6 m^2 (2m+1) (2+\frac{\eta}{2}) \eta + \eta 8(m^3-m^2) < 1$$
854854
and hence $k \leq 0$. The claim now follows from \Cref{multidist-nonneg}.
855855
\end{proof}
856856

0 commit comments

Comments
 (0)