forked from dome272/Diffusion-Models-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathdata_ffcv.py
55 lines (47 loc) · 2.04 KB
/
data_ffcv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
import torchvision
from ffcv.fields import IntField, RGBImageField
from ffcv.fields.decoders import IntDecoder, SimpleRGBImageDecoder
from ffcv.loader import Loader, OrderOption
from ffcv.pipeline.operation import Operation
from ffcv.transforms import RandomHorizontalFlip, Cutout, \
RandomTranslate, Convert, ToDevice, ToTensor, ToTorchImage
from ffcv.transforms.common import Squeeze
from ffcv.writer import DatasetWriter
def create_cifar_ffcv():
datasets = {
'train': torchvision.datasets.ImageFolder(os.path.join(args.dataset_path, args.train_folder)),
'test': torchvision.datasets.ImageFolder(os.path.join(args.dataset_path, args.val_folder))
}
for (name, ds) in datasets.items():
writer = DatasetWriter(f'/datasets/cifar_{name}.beton', {
'image': RGBImageField(),
'label': IntField()
})
writer.from_indexed_dataset(ds)
def get_dataloaders(config):
loaders = {}
for name in ['train', 'test']:
label_pipeline: List[Operation] = [IntDecoder(), ToTensor(), ToDevice('cuda:0'), Squeeze()]
image_pipeline: List[Operation] = [SimpleRGBImageDecoder()]
# Add image transforms and normalization
if name == 'train':
image_pipeline.extend([
RandomHorizontalFlip(),
RandomTranslate(padding=2),
])
image_pipeline.extend([
ToTensor(),
ToDevice('cuda:0', non_blocking=True),
ToTorchImage(),
Convert(torch.float16),
])
# Create loaders
loaders[name] = Loader(f'/datasets/cifar_{name}.beton',
batch_size=config.batch_size,
num_workers=config.num_workers,
order=OrderOption.RANDOM,
drop_last=(name == 'train'),
pipelines={'image': image_pipeline,
'label': label_pipeline})
return loaders["train"], loaders["test"]