-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPASModelJournal.py
201 lines (165 loc) · 8.2 KB
/
PASModelJournal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch
import torch.nn as nn
device = torch.device('cuda' if torch.cuda.is_available else "cpu")
from ResNet_models_Custom import Triple_Conv, multi_scale_aspp, Classifier_Module, RCAB, BasicConv2d
from Multi_head import MHSA
from dpt.models_custom import DPTSegmentationModel, DPTDepthModel
import torch.nn.functional as F
import torchvision
class Pyramid_block(nn.Module):
def __init__(self, in_channels, in_resolution,out_channels,out_resolution,heads,initial):
super(Pyramid_block, self).__init__()
self.block1 = nn.ModuleList()
if in_channels != out_channels:
self.block1.append(Triple_Conv(in_channels, out_channels))
if initial==1:
self.block1.append(multi_scale_aspp(in_channels))
self.block1.append(multi_scale_aspp(in_channels))
self.block1.append(multi_scale_aspp(in_channels))
self.block1.append(MHSA(out_channels, width=in_resolution, height=in_resolution, heads=heads))
elif initial==2:
self.block1.append(multi_scale_aspp(in_channels))
self.block1.append(multi_scale_aspp(in_channels))
self.block1.append(MHSA(in_channels, width=in_resolution, height=in_resolution, heads=heads))
elif initial==3:
self.block1.append(multi_scale_aspp(in_channels))
self.block1.append(MHSA(in_channels, width=in_resolution, height=in_resolution, heads=heads))
elif initial==4:
self.block1.append(multi_scale_aspp(in_channels))
self.block1 = nn.Sequential(*self.block1)
self.in_resolution = in_resolution
self.out_resolution = out_resolution
def forward(self, x):
x = self.block1(x)
if self.in_resolution != self.out_resolution:
x = F.interpolate(x, size=(self.out_resolution,self.out_resolution), mode='bilinear',align_corners=True)
return x
class PASNet(nn.Module):
def __init__(self, channel, latent_dim):
super(PASNet, self).__init__()
model_d_path = "weights/dpt_hybrid-midas-501f0c75.pt"
self.dpt_depth_model = DPTDepthModel(
path=model_d_path,
backbone="vitb_rn50_384",
non_negative=True,
enable_attention_hooks=False,
)
self.dpt_depth_model.eval()
self.dpt_depth_model = self.dpt_depth_model.to(memory_format=torch.channels_last)
#
# model_path = "weights/dpt_hybrid-ade20k-53898607.pt"
# self.dpt_model = DPTSegmentationModel(
# 150,
# path=model_path,
# backbone="vitb_rn50_384",
# )
# self.dpt_model.eval()
# self.dpt_model = self.dpt_model.to(memory_format=torch.channels_last)
self.original_model = torchvision.models.resnet152(pretrained=True)
self.features1 = nn.Sequential(
*list(self.original_model.children())[:-5]
)
self.features2 = nn.Sequential(
*list(self.original_model.children())[:-4]
)
self.features3 = nn.Sequential(
*list(self.original_model.children())[:-3]
)
self.features4 = nn.Sequential(
*list(self.original_model.children())[:-2]
)
self.asppconv4 = multi_scale_aspp(channel)
# self.spatial_axes = [2, 3]
self.conv_depth1 = BasicConv2d(6 + latent_dim, 3, kernel_size=3, padding=1)
self.racb_43 = RCAB(channel * 2)
self.racb_432 = RCAB(channel * 3)
self.racb_4321 = RCAB(channel * 4)
self.aspp_mhsa1 = Pyramid_block(32, 56, 32, 56, 4, 1)
self.aspp_mhsa2 = Pyramid_block(32, 56, 32, 56, 4, 2)
self.aspp_mhsa3 = Pyramid_block(32, 28, 32, 28, 4, 3)
self.aspp_mhsa4 = Pyramid_block(32, 14, 32, 14, 4, 4)
features = 256
non_negative = True
self.head = nn.Sequential(
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(32, 32, kernel_size=1, stride=1, padding=0),
nn.ReLU(True) if non_negative else nn.Identity(),
nn.Identity(),
)
self.conv43 = Triple_Conv(2 * channel, channel)
self.conv432 = Triple_Conv(3 * channel, channel)
self.conv4321 = Triple_Conv(4 * channel, channel)
self.conv1_1 = Triple_Conv(96, channel)
self.conv1_11 = Triple_Conv(64, channel)
self.conv1 = Triple_Conv(256, channel)
self.conv2 = Triple_Conv(512, channel)
self.conv3 = Triple_Conv(1024, channel)
self.conv4 = Triple_Conv(2048, channel)
self.layer6 = self._make_pred_layer(Classifier_Module, [6, 12, 18, 24], [6, 12, 18, 24], 1, channel)
self.upsample8 = nn.Upsample(scale_factor=8, mode='bilinear', align_corners=True)
self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=True)
self.upsample2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv11 = Triple_Conv(6,3)
def forward(self, x , d):
# if training:
# self.x_sal = self.sal_encoder(x)
# x = torch.cat((x,d),1)
# x = self.conv11(x)
# _, p1, p2, p3, p4 = self.dpt_model(x) # p1: [2, 256, 112, 112], p2: [2, 256, 56, 56], p3: [2, 256, 28, 28], p4: [2, 256, 14, 14]
_, _, _, _, d4 = self.dpt_depth_model(d) # d4: [2, 256, 14, 14]
p1 = self.features1(x) # [1, 256, 56, 56]
p2 = self.features2(x) # [1, 512, 28, 28]
p3 = self.features3(x) # [1, 1024, 14, 14]
p4 = self.features4(x) # [1, 2048, 7, 7]
p1 = self.upsample2(p1)
p2 = self.upsample2(p2)
p3 = self.upsample2(p3)
p4 = self.upsample2(p4)
d4 = self.head(d4) # [2, 32, 14, 14]
# d1, d2, d3 = self.depth_model(d)
# self.x1, self.x2, self.x3, self.x4 = self.sal_encoder(x, self.depth)
conv1_feat = self.conv1(p1) # [2, 32, 112, 112]
# d1 = self.conv1(F.interpolate(d1, size=(56,56), mode='bilinear', align_corners=True))
conv1_feat_x1 = F.interpolate(conv1_feat, size=(56, 56), mode='bilinear', align_corners=True) # [2, 32, 56, 56]
# conv1_feat_x1_d1 = self.conv1_1(torch.cat((conv1_feat_x1,d1),1))
conv1_feat = self.aspp_mhsa1(conv1_feat_x1) # [2, 32, 56, 56]
conv1_feat = self.conv1_11(torch.cat((conv1_feat, conv1_feat_x1), 1)) # [2, 32, 56, 56]
conv2_feat_x2 = self.conv2(p2)
# d2 = self.conv1(d2)
# conv2_feat_x2_d2 = self.conv1_1(torch.cat((conv2_feat_x2,d2),1))
conv2_feat = self.aspp_mhsa2(conv2_feat_x2)
conv2_feat = self.conv1_11(torch.cat((conv2_feat, conv2_feat_x2), 1))
conv3_feat_x3 = self.conv3(p3)
# d3 = self.conv1(d3)
conv3_feat = self.aspp_mhsa3(conv3_feat_x3)
conv3_feat = self.conv1_11(torch.cat((conv3_feat, conv3_feat_x3), 1))
# conv3_feat = self.asppconv3(conv3_feat)
conv4_feat_x4 = self.conv4(p4)
# d4 = self.conv1(d4)
conv4_feat = self.aspp_mhsa4(conv4_feat_x4)
conv4_feat = self.conv1_1(torch.cat((conv4_feat,d4,conv4_feat_x4),1))
# conv4_feat = self.asppconv4(conv4_feat)
conv4_feat = self.upsample2(conv4_feat)
conv43 = torch.cat((conv4_feat, conv3_feat), 1)
conv43 = self.racb_43(conv43)
conv43 = self.conv43(conv43)
conv43 = self.upsample2(conv43)
conv432 = torch.cat((self.upsample2(conv4_feat), conv43, conv2_feat), 1)
conv432 = self.racb_432(conv432)
conv432 = self.conv432(conv432)
conv432 = self.upsample2(conv432)
conv4321 = torch.cat((self.upsample4(conv4_feat), self.upsample2(conv43), conv432, self.upsample2(conv1_feat)),1)
conv4321 = self.racb_4321(conv4321)
conv4321 = self.conv4321(conv4321)
sal_init = self.layer6(conv4321)
return self.upsample2(sal_init)
def _make_pred_layer(self, block, dilation_series, padding_series, NoLabels, input_channel):
return block(dilation_series, padding_series, NoLabels, input_channel)
x = torch.randn((2, 3, 224, 224)).to(device)
depth = torch.randn((2, 3, 224, 224)).to(device)
# # gt = torch.randn((12, 1, 224, 224)).to(device)
model = PASNet(32,3).to(device)
y = model(x,depth)
print (y.shape)