-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
112 lines (88 loc) · 4.2 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
from sklearn.metrics import roc_auc_score
import torch
import torchvision.transforms as transforms
from openvino.inference_engine import IECore
import argparse
import timeit
from datasets import ChestXrayDataSet
from model import DenseNet121, CLASS_NAMES, N_CLASSES
def main(args):
if args.mode == 'torch':
net = DenseNet121(N_CLASSES)
net.load_state_dict(torch.load('model/model.pth', map_location=torch.device('cpu')))
print('model state has loaded')
if args.num_threads:
torch.set_num_threads(args.num_threads)
print('number of threads %d' % (torch.get_num_threads()))
elif args.mode == 'fp32' or args.mode == 'int8':
if args.mode == 'fp32':
modelfile = 'densenet121.xml'
elif args.mode == 'int8':
modelfile = 'chexnet.xml'
model_xml = 'model/%s' % (modelfile)
model_bin = model_xml.replace('.xml', '.bin')
print('Creating Inference Engine')
ie = IECore()
net = ie.read_network(model=model_xml, weights=model_bin)
# loading model to the plugin
print('Loading model to the plugin')
exec_net = ie.load_network(network=net, device_name='CPU')
print('Preparing input blobs')
input_blob = next(iter(net.input_info))
output_blob = next(iter(net.outputs))
model_batch_size, c, h, w = net.input_info[input_blob].input_data.shape
# for image load
normalize = transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
test_dataset = ChestXrayDataSet(
data_dir=args.data_dir,
image_list_file=args.test_image_list,
transform=transforms.Compose([
transforms.Resize(256),
transforms.TenCrop(224),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
transforms.Lambda(lambda crops: torch.stack([normalize(crop) for crop in crops]))
]))
test_loader = torch.utils.data.DataLoader(
dataset=test_dataset,
batch_size=args.batch_size,
shuffle=False,
pin_memory=False,
drop_last=True)
y_true = torch.FloatTensor()
y_pred = torch.FloatTensor()
for index, (data, labels) in enumerate(test_loader, 1):
start_time = timeit.default_timer()
batch_size, n_crops, c, h, w = data.size()
data = data.view(-1, c, h, w)
if args.mode == 'torch':
with torch.no_grad():
outputs = net(data)
outputs = outputs.view(batch_size, n_crops, -1).mean(1)
outputs = outputs.numpy()
elif args.mode == 'fp32' or args.mode == 'int8':
images = np.zeros(shape=(model_batch_size, c, h, w))
images[:n_crops * args.batch_size, :c, :h, :w] = data.numpy()
outputs = exec_net.infer(inputs={input_blob: images})
outputs = outputs[output_blob]
outputs = outputs[:n_crops * args.batch_size].reshape(args.batch_size, n_crops, -1)
outputs = np.mean(outputs, axis=1)
outputs = outputs[:args.batch_size, :outputs.shape[1]]
y_true = torch.cat((y_true, labels), 0)
y_pred = torch.cat((y_pred, torch.from_numpy(outputs)), 0)
print('\r%4d/%4d, time: %5.1fsec' % (index, len(test_loader), (timeit.default_timer() - start_time)), end='')
aucs = [roc_auc_score(y_true[:, i], y_pred[:, i]) if y_true[:, i].sum() > 0 else np.nan for i in range(N_CLASSES)]
auc_classes = ' '.join(['%5.3f' % (aucs[i]) for i in range(N_CLASSES)])
print(' average AUC %5.3f (%s)' % (np.mean(aucs), auc_classes))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mode', choices=['torch', 'fp32', 'int8'], default='torch', type=str)
parser.add_argument('--num_threads', default=None, type=int)
parser.add_argument('--batch_size', default=10, type=int)
parser.add_argument('--data_dir', default='images', type=str)
parser.add_argument('--test_image_list', default='labels/test_list.txt', type=str)
args = parser.parse_args()
print(vars(args))
main(args)