forked from trezor/trezor-crypto
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsha3.c
397 lines (358 loc) · 10.7 KB
/
sha3.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/* sha3.c - an implementation of Secure Hash Algorithm 3 (Keccak).
* based on the
* The Keccak SHA-3 submission. Submission to NIST (Round 3), 2011
* by Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche
*
* Copyright: 2013 Aleksey Kravchenko <[email protected]>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. Use this program at your own risk!
*/
#include <assert.h>
#include <string.h>
#include "sha3.h"
#include "macros.h"
#define I64(x) x##LL
#define ROTL64(qword, n) ((qword) << (n) ^ ((qword) >> (64 - (n))))
#define le2me_64(x) (x)
#define IS_ALIGNED_64(p) (0 == (7 & ((const char*)(p) - (const char*)0)))
# define me64_to_le_str(to, from, length) memcpy((to), (from), (length))
/* constants */
#define NumberOfRounds 24
/* SHA3 (Keccak) constants for 24 rounds */
static uint64_t keccak_round_constants[NumberOfRounds] = {
I64(0x0000000000000001), I64(0x0000000000008082), I64(0x800000000000808A), I64(0x8000000080008000),
I64(0x000000000000808B), I64(0x0000000080000001), I64(0x8000000080008081), I64(0x8000000000008009),
I64(0x000000000000008A), I64(0x0000000000000088), I64(0x0000000080008009), I64(0x000000008000000A),
I64(0x000000008000808B), I64(0x800000000000008B), I64(0x8000000000008089), I64(0x8000000000008003),
I64(0x8000000000008002), I64(0x8000000000000080), I64(0x000000000000800A), I64(0x800000008000000A),
I64(0x8000000080008081), I64(0x8000000000008080), I64(0x0000000080000001), I64(0x8000000080008008)
};
/* Initializing a sha3 context for given number of output bits */
static void keccak_Init(SHA3_CTX *ctx, unsigned bits)
{
/* NB: The Keccak capacity parameter = bits * 2 */
unsigned rate = 1600 - bits * 2;
memset(ctx, 0, sizeof(SHA3_CTX));
ctx->block_size = rate / 8;
assert(rate <= 1600 && (rate % 64) == 0);
}
/**
* Initialize context before calculating hash.
*
* @param ctx context to initialize
*/
void sha3_224_Init(SHA3_CTX *ctx)
{
keccak_Init(ctx, 224);
}
/**
* Initialize context before calculating hash.
*
* @param ctx context to initialize
*/
void sha3_256_Init(SHA3_CTX *ctx)
{
keccak_Init(ctx, 256);
}
/**
* Initialize context before calculating hash.
*
* @param ctx context to initialize
*/
void sha3_384_Init(SHA3_CTX *ctx)
{
keccak_Init(ctx, 384);
}
/**
* Initialize context before calculating hash.
*
* @param ctx context to initialize
*/
void sha3_512_Init(SHA3_CTX *ctx)
{
keccak_Init(ctx, 512);
}
/* Keccak theta() transformation */
static void keccak_theta(uint64_t *A)
{
unsigned int x;
uint64_t C[5], D[5];
for (x = 0; x < 5; x++) {
C[x] = A[x] ^ A[x + 5] ^ A[x + 10] ^ A[x + 15] ^ A[x + 20];
}
D[0] = ROTL64(C[1], 1) ^ C[4];
D[1] = ROTL64(C[2], 1) ^ C[0];
D[2] = ROTL64(C[3], 1) ^ C[1];
D[3] = ROTL64(C[4], 1) ^ C[2];
D[4] = ROTL64(C[0], 1) ^ C[3];
for (x = 0; x < 5; x++) {
A[x] ^= D[x];
A[x + 5] ^= D[x];
A[x + 10] ^= D[x];
A[x + 15] ^= D[x];
A[x + 20] ^= D[x];
}
}
/* Keccak pi() transformation */
static void keccak_pi(uint64_t *A)
{
uint64_t A1;
A1 = A[1];
A[ 1] = A[ 6];
A[ 6] = A[ 9];
A[ 9] = A[22];
A[22] = A[14];
A[14] = A[20];
A[20] = A[ 2];
A[ 2] = A[12];
A[12] = A[13];
A[13] = A[19];
A[19] = A[23];
A[23] = A[15];
A[15] = A[ 4];
A[ 4] = A[24];
A[24] = A[21];
A[21] = A[ 8];
A[ 8] = A[16];
A[16] = A[ 5];
A[ 5] = A[ 3];
A[ 3] = A[18];
A[18] = A[17];
A[17] = A[11];
A[11] = A[ 7];
A[ 7] = A[10];
A[10] = A1;
/* note: A[ 0] is left as is */
}
/* Keccak chi() transformation */
static void keccak_chi(uint64_t *A)
{
int i;
for (i = 0; i < 25; i += 5) {
uint64_t A0 = A[0 + i], A1 = A[1 + i];
A[0 + i] ^= ~A1 & A[2 + i];
A[1 + i] ^= ~A[2 + i] & A[3 + i];
A[2 + i] ^= ~A[3 + i] & A[4 + i];
A[3 + i] ^= ~A[4 + i] & A0;
A[4 + i] ^= ~A0 & A1;
}
}
static void sha3_permutation(uint64_t *state)
{
int round;
for (round = 0; round < NumberOfRounds; round++)
{
keccak_theta(state);
/* apply Keccak rho() transformation */
state[ 1] = ROTL64(state[ 1], 1);
state[ 2] = ROTL64(state[ 2], 62);
state[ 3] = ROTL64(state[ 3], 28);
state[ 4] = ROTL64(state[ 4], 27);
state[ 5] = ROTL64(state[ 5], 36);
state[ 6] = ROTL64(state[ 6], 44);
state[ 7] = ROTL64(state[ 7], 6);
state[ 8] = ROTL64(state[ 8], 55);
state[ 9] = ROTL64(state[ 9], 20);
state[10] = ROTL64(state[10], 3);
state[11] = ROTL64(state[11], 10);
state[12] = ROTL64(state[12], 43);
state[13] = ROTL64(state[13], 25);
state[14] = ROTL64(state[14], 39);
state[15] = ROTL64(state[15], 41);
state[16] = ROTL64(state[16], 45);
state[17] = ROTL64(state[17], 15);
state[18] = ROTL64(state[18], 21);
state[19] = ROTL64(state[19], 8);
state[20] = ROTL64(state[20], 18);
state[21] = ROTL64(state[21], 2);
state[22] = ROTL64(state[22], 61);
state[23] = ROTL64(state[23], 56);
state[24] = ROTL64(state[24], 14);
keccak_pi(state);
keccak_chi(state);
/* apply iota(state, round) */
*state ^= keccak_round_constants[round];
}
}
/**
* The core transformation. Process the specified block of data.
*
* @param hash the algorithm state
* @param block the message block to process
* @param block_size the size of the processed block in bytes
*/
static void sha3_process_block(uint64_t hash[25], const uint64_t *block, size_t block_size)
{
/* expanded loop */
hash[ 0] ^= le2me_64(block[ 0]);
hash[ 1] ^= le2me_64(block[ 1]);
hash[ 2] ^= le2me_64(block[ 2]);
hash[ 3] ^= le2me_64(block[ 3]);
hash[ 4] ^= le2me_64(block[ 4]);
hash[ 5] ^= le2me_64(block[ 5]);
hash[ 6] ^= le2me_64(block[ 6]);
hash[ 7] ^= le2me_64(block[ 7]);
hash[ 8] ^= le2me_64(block[ 8]);
/* if not sha3-512 */
if (block_size > 72) {
hash[ 9] ^= le2me_64(block[ 9]);
hash[10] ^= le2me_64(block[10]);
hash[11] ^= le2me_64(block[11]);
hash[12] ^= le2me_64(block[12]);
/* if not sha3-384 */
if (block_size > 104) {
hash[13] ^= le2me_64(block[13]);
hash[14] ^= le2me_64(block[14]);
hash[15] ^= le2me_64(block[15]);
hash[16] ^= le2me_64(block[16]);
/* if not sha3-256 */
if (block_size > 136) {
hash[17] ^= le2me_64(block[17]);
#ifdef FULL_SHA3_FAMILY_SUPPORT
/* if not sha3-224 */
if (block_size > 144) {
hash[18] ^= le2me_64(block[18]);
hash[19] ^= le2me_64(block[19]);
hash[20] ^= le2me_64(block[20]);
hash[21] ^= le2me_64(block[21]);
hash[22] ^= le2me_64(block[22]);
hash[23] ^= le2me_64(block[23]);
hash[24] ^= le2me_64(block[24]);
}
#endif
}
}
}
/* make a permutation of the hash */
sha3_permutation(hash);
}
#define SHA3_FINALIZED 0x80000000
/**
* Calculate message hash.
* Can be called repeatedly with chunks of the message to be hashed.
*
* @param ctx the algorithm context containing current hashing state
* @param msg message chunk
* @param size length of the message chunk
*/
void sha3_Update(SHA3_CTX *ctx, const unsigned char *msg, size_t size)
{
size_t idx = (size_t)ctx->rest;
size_t block_size = (size_t)ctx->block_size;
if (ctx->rest & SHA3_FINALIZED) return; /* too late for additional input */
ctx->rest = (unsigned)((ctx->rest + size) % block_size);
/* fill partial block */
if (idx) {
size_t left = block_size - idx;
memcpy((char*)ctx->message + idx, msg, (size < left ? size : left));
if (size < left) return;
/* process partial block */
sha3_process_block(ctx->hash, ctx->message, block_size);
msg += left;
size -= left;
}
while (size >= block_size) {
uint64_t* aligned_message_block;
if (IS_ALIGNED_64(msg)) {
/* the most common case is processing of an already aligned message
without copying it */
aligned_message_block = (uint64_t*)(void*)msg;
} else {
memcpy(ctx->message, msg, block_size);
aligned_message_block = ctx->message;
}
sha3_process_block(ctx->hash, aligned_message_block, block_size);
msg += block_size;
size -= block_size;
}
if (size) {
memcpy(ctx->message, msg, size); /* save leftovers */
}
}
/**
* Store calculated hash into the given array.
*
* @param ctx the algorithm context containing current hashing state
* @param result calculated hash in binary form
*/
void sha3_Final(SHA3_CTX *ctx, unsigned char* result)
{
size_t digest_length = 100 - ctx->block_size / 2;
const size_t block_size = ctx->block_size;
if (!(ctx->rest & SHA3_FINALIZED))
{
/* clear the rest of the data queue */
memset((char*)ctx->message + ctx->rest, 0, block_size - ctx->rest);
((char*)ctx->message)[ctx->rest] |= 0x06;
((char*)ctx->message)[block_size - 1] |= 0x80;
/* process final block */
sha3_process_block(ctx->hash, ctx->message, block_size);
ctx->rest = SHA3_FINALIZED; /* mark context as finalized */
}
assert(block_size > digest_length);
if (result) me64_to_le_str(result, ctx->hash, digest_length);
MEMSET_BZERO(ctx, sizeof(SHA3_CTX));
}
#if USE_KECCAK
/**
* Store calculated hash into the given array.
*
* @param ctx the algorithm context containing current hashing state
* @param result calculated hash in binary form
*/
void keccak_Final(SHA3_CTX *ctx, unsigned char* result)
{
size_t digest_length = 100 - ctx->block_size / 2;
const size_t block_size = ctx->block_size;
if (!(ctx->rest & SHA3_FINALIZED))
{
/* clear the rest of the data queue */
memset((char*)ctx->message + ctx->rest, 0, block_size - ctx->rest);
((char*)ctx->message)[ctx->rest] |= 0x01;
((char*)ctx->message)[block_size - 1] |= 0x80;
/* process final block */
sha3_process_block(ctx->hash, ctx->message, block_size);
ctx->rest = SHA3_FINALIZED; /* mark context as finalized */
}
assert(block_size > digest_length);
if (result) me64_to_le_str(result, ctx->hash, digest_length);
MEMSET_BZERO(ctx, sizeof(SHA3_CTX));
}
void keccak_256(const unsigned char* data, size_t len, unsigned char* digest)
{
SHA3_CTX ctx;
keccak_256_Init(&ctx);
keccak_Update(&ctx, data, len);
keccak_Final(&ctx, digest);
}
void keccak_512(const unsigned char* data, size_t len, unsigned char* digest)
{
SHA3_CTX ctx;
keccak_512_Init(&ctx);
keccak_Update(&ctx, data, len);
keccak_Final(&ctx, digest);
}
#endif /* USE_KECCAK */
void sha3_256(const unsigned char* data, size_t len, unsigned char* digest)
{
SHA3_CTX ctx;
sha3_256_Init(&ctx);
sha3_Update(&ctx, data, len);
sha3_Final(&ctx, digest);
}
void sha3_512(const unsigned char* data, size_t len, unsigned char* digest)
{
SHA3_CTX ctx;
sha3_512_Init(&ctx);
sha3_Update(&ctx, data, len);
sha3_Final(&ctx, digest);
}