-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathself_train_main.py
executable file
·103 lines (79 loc) · 4.06 KB
/
self_train_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
'''
# 写一个可以跑所有方法的主文件,用来训练第一阶段,做好不同方法的引用设计
# 可以选择的方法 simclr,byol,simsiam,dcl,nnclr,moco, swav
修改自:https://github.com/lightly-ai/lightly
'''
import torch
from torch import nn
import os
import argparse
from networks.MsmcNet import MsmcNet_RML2016 # 网络模型
from networks.SigRes import resnet10_re
from torchvision import transforms
from data.RML2016all import RMLDataset, loadNpy_self
from data.Augmentation import MultiViewDataInjector
from data.Augmentation import Givremote, Reversal_I, Reversal_Q, Centrosymmetric, Shiftsignal, Resizesignal, MultiViewDataInjector
# 不同方法的导入
# 可以选择的方法 simclr,byol,simsiam,dcl,nnclr,moco, swav
from selfsup.methods.simclr import Simclr_train #1
from selfsup.methods.byol import Byol_train #2
from selfsup.methods.simsiam import Simsiam_train #3
from selfsup.methods.dcl import Dcl_train #4
from selfsup.methods.nnclr import Nnclr_train #5
from selfsup.methods.moco import Moco_train #6
from selfsup.methods.swav import Swav_train #7
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def main(args):
# 导入数据集
x_train, y_train = loadNpy_self(args.train_path) #载入数据
print(x_train.shape)
# 数据增强
data_transforms = transforms.Compose([
Givremote(0.5),
Reversal_I(0.5),Reversal_Q(0.5),
Centrosymmetric(0.5),
Shiftsignal(0.5),
Resizesignal(0.5)] )
train_dataset = RMLDataset(
x_train, y_train,
transform = MultiViewDataInjector([data_transforms, data_transforms]) )
dataloader = torch.utils.data.DataLoader(train_dataset,
batch_size = args.batch_size,
num_workers = args.num_workers,
shuffle = True,
drop_last = True )
# backbone模型导入
cnn = resnet10_re(num_classes = 11)
# cnn = MsmcNet_RML2016(num_classes=11)
out_feature = cnn.fc.in_features
backbone = nn.Sequential(*list(cnn.children())[:-1])
# print(backbone)
print('method:',args.method)
if args.method == 'simclr':
Simclr_train(args,backbone,out_feature,dataloader)
elif args.method == 'byol':
Byol_train(args,backbone,out_feature,dataloader)
elif args.method == 'simsiam':
Simsiam_train(args,backbone,out_feature,dataloader)
elif args.method == 'dcl':
Dcl_train(args,backbone,out_feature,dataloader)
elif args.method == 'nnclr':
Nnclr_train(args,backbone,out_feature,dataloader)
elif args.method == 'moco':
Moco_train(args,backbone,out_feature,dataloader)
elif args.method == 'swav':
Swav_train(args,backbone,out_feature,dataloader)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Self_train_main")
parser.add_argument("-method", type=str, default='simclr') # 对不同的方法进行选择
parser.add_argument("-dataset_name", type=str, default='RML201610A')
parser.add_argument("-model", type=str, default='resnet10')
parser.add_argument("-train_path", type=str, default='/media/hp3090/HDD-2T/WX/RMLsig_ALL/datasets/RML2016_10A/all-train-8.npy')
parser.add_argument("-batch_size", type=int, default=550)
parser.add_argument("-num_workers", type=int, default=2)
parser.add_argument("-lr", type=float, default=0.06)
parser.add_argument("-weight_decay", type=float, default=0.0004)
parser.add_argument("-optimizer", type=str, default='SGD')
parser.add_argument("-max_epochs", type=int, default=2)
args = parser.parse_args()
main(args)