Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Taichi get slower after about 500 loops #8513

Open
hairuiC opened this issue Apr 17, 2024 · 2 comments
Open

Taichi get slower after about 500 loops #8513

hairuiC opened this issue Apr 17, 2024 · 2 comments
Labels
question Question on using Taichi

Comments

@hairuiC
Copy link

hairuiC commented Apr 17, 2024

I got a problem: I need to render over 10 thousand images using taichi. At first 500 loops it's really fast about 3e-5s each image. But after that it get slow. The time is about 0.01~0.02s each loop. The image size is 1024 * 1024 and spp is 32. I'm a starter of taichi and can't figure out the reason. I have tried my program on different GPUs: 2080Ti and 3090. They are facing the same situation.

Any body met this problem and can some body give any advice?

`import random

import taichi as ti
import numpy as np
import argparse
from time import time
from ray_tracing_models import calibration
import math
import torch
import gc
from ray_tracing_models import Ray, Camera, Hittable_list, PI, random_in_unit_sphere, refract, reflect, reflectance, random_unit_vector, Plane, local2world
ti.init(arch=ti.gpu, device_memory_GB=11, device_memory_fraction=1.0)

image_width = 2048
image_height = 2048
canvas = ti.Vector.field(1, dtype=ti.f32, shape=(image_width, image_height))
random_num = 10000
rand_x_z = ti.field(ti.f64, shape=random_num)

sigma = 0.0
_rand_x_z = np.random.normal(loc=0., scale=sigma, size=random_num)
rand_x_z.from_numpy(_rand_x_z)
x_board = [3022, 8002]
y_board = [1172, 9002]
x_rand = np.random.uniform(x_board[0], x_board[1], random_num)
y_rand = np.random.uniform(y_board[0], y_board[1], random_num)
samples_per_pixel = 64
ray_num = samples_per_pixel * image_width * image_height
print(ray_num)
max_depth = 2

@ti.kernel
def render():
for ray_no in range(ray_num):
pixel_n = int(ray_no % (image_width * image_height))
row_num = int(pixel_n / image_width)
col_num = int(pixel_n % image_width)
color = ti.Vector([0.0])
u = (row_num + ti.random()) / image_width
v = (col_num + ti.random()) / image_height
ray = camera.get_ray(u, v)
color = ray_color(ray, ray_no)
color /= samples_per_pixel

    ti.atomic_add(canvas[row_num, col_num],color)

@ti.func
def ray_color(ray, ray_no):
color_buffer = ti.Vector([0.0])
brightness = ti.Vector([1.0])
scattered_origin = ray.origin
scattered_direction = ray.direction
p_RR = 1.0
for n in range(max_depth):
if ti.random() > p_RR:
break
is_hit, hit_point, hit_point_normal, front_face, material, color = scene.hit(Ray(scattered_origin, scattered_direction))
if is_hit:
if material == 0 and front_face:

            color_buffer = color * brightness
            break
        else:
                TBN = local2world(hit_point_normal)
                temp_normal = ti.math.normalize(ti.Vector([rand_x_z[int((ray_no)%random_num)], 1.0, rand_x_z[int((ray_no)%random_num)]]))

                new_normal = TBN@temp_normal
                scattered_direction = ti.math.reflect(scattered_direction, new_normal)
                scattered_origin = hit_point
                brightness *= color

    else:
        color_buffer = ti.Vector([0.8])
return color_buffer

if name == "main":
for i in range(10000):
# rand_x = x_rand[k]
# rand_y = y_rand[k]
# i = 100
random_point_pos = ti.Vector([x_rand[i], y_rand[i]])
sigma_k = sigma
render_part = ti.math.vec4([random_point_pos[0] - 100,
random_point_pos[1] - 100,
random_point_pos[0] + 100,
random_point_pos[1] + 100])
camera = Camera()
lumitexel = []
scene = Hittable_list()
scene.from_obj("mirror.obj", mtl=1)

    for j in range(10240):
        a = time()

        scene.from_obj("single_light/light_{}.obj".format(j), mtl=0)
        canvas.fill(0)

        render()

        scene.clear()
        lumitexel.append(canvas[int(x_rand[i]), int(y_rand[i])])
        b = time()
        print((b - a), j)
    print(np.max(lumitexel))

`

@hairuiC hairuiC added the question Question on using Taichi label Apr 17, 2024
@github-project-automation github-project-automation bot moved this to Untriaged in Taichi Lang Apr 17, 2024
@bobcao3
Copy link
Collaborator

bobcao3 commented Jun 22, 2024

Is the loop creating / declaring more fields? Fields are global and are not GCed.

@bobcao3
Copy link
Collaborator

bobcao3 commented Jun 22, 2024

Also in recent versions of taichi you shouldn't need to declare device_memory_GB=11, device_memory_fraction=1.0 unless you are using sparse SNodes

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
question Question on using Taichi
Projects
Status: Untriaged
Development

No branches or pull requests

2 participants