forked from srbmiy/ssreflect
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ssrFOL01.v
370 lines (308 loc) · 10.5 KB
/
ssrFOL01.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice fintype.
Require Import finfun bigop finset.
Axiom SET : Type.
Definition Var := nat.
Definition Term := nat.
(*
Definition equalS : nat := 0.
Definition memS : nat := 1.
Definition notS : nat := 2.
Definition orS : nat := 3.
Definition andS : nat := 4.
Definition implS : nat := 5.
Definition forallS : Term -> nat :=
fun t => 6.
Definition existsS : Term -> nat :=
fun t => 7.
*)
Inductive Fml : Type :=
| equalityS : Var -> Var -> Fml
| membershipS : Var -> Var -> Fml
| notS : Fml -> Fml
| orS : Fml -> Fml -> Fml
| andS : Fml -> Fml -> Fml
| implS : Fml -> Fml -> Fml
| forallS : Var -> Fml -> Fml
| existsS : Var -> Fml -> Fml.
Notation "x _=_ y" := (equalityS x y) (at level 50).
Notation "x _∈_ y" := (membershipS x y) (at level 50).
Notation "¬ x" := (notS x) (at level 51).
Notation "x ∨ y" := (orS x y) (at level 51).
Notation "x ∧ y" := (andS x y) (at level 51).
Notation "x → y" := (implS x y) (at level 51).
Notation "∀ x , y" := (forallS x y) (at level 51).
Notation "∃ x , y" := (existsS x y) (at level 51).
Definition allFml (p : Fml -> bool) f :=
match f with
| notS f1 => p f1
| orS f1 f2 => p f1 && p f2
| andS f1 f2 => p f1 && p f2
| implS f1 f2 => p f1 && p f2
| forallS x f1 => p f1
| existsS x f1 => p f1
| _ => true
end.
(* Syntactic comparison and eqType for Fml. *)
Fixpoint eqFml F G {struct F} :=
match F, G with
| equalityS m0 m1, equalityS n0 n1 => (m0 == n0) && (m1 == n1)
| membershipS m0 m1, membershipS n0 n1 => (m0 == n0) && (m1 == n1)
| notS F0, notS G0 => eqFml F0 G0
| orS F0 F1, orS G0 G1 => eqFml F0 G0 && eqFml F1 G1
| andS F0 F1, andS G0 G1 => eqFml F0 G0 && eqFml F1 G1
| implS F0 F1, implS G0 G1 => eqFml F0 G0 && eqFml F1 G1
| forallS m F0, forallS n G0 => (m == n) && eqFml F0 G0
| existsS m F0, existsS n G0 => (m == n) && eqFml F0 G0
| _, _ => false
end.
Lemma eqFmlP : Equality.axiom eqFml.
Proof.
move=> F G.
apply (iffP idP); last first; [move => -> //| ].
- elim: G => //; move=>*; by apply/andP.
(* + move=> v v0 /=.
by apply/andP.
+ move=> v v0 /=.
by apply/andP.
+ move=> f H f0 H0 => /=.
by apply/andP.
+ move=> f H f0 H0 => /=.
by apply/andP.
+ move=> f H f0 H0 => /=.
by apply/andP.
+ move=> v f H => /=.
by apply/andP.
+ move=> v f H => /=.
by apply/andP.*)
- move: G; elim F; (move=> f H f0 H0 G E || move=> v f H G E || move => v v0 G E); move: G E;
solve [ case=> v1 v2 //= /andP [] /eqP -> /eqP -> //
| case=> f // /v0 -> //
| case=> f1 f2 //= /andP [] /H -> /H0 -> //
| case=> v0 f0 //= /andP [] /eqP -> /H -> //].
(*case=> ? ? //= /andP; solve [elim=> /eqP -> /eqP -> // | elim=> /H -> /H0 -> // | elim=> /eqP -> /H -> //]*)
(* + move=> v v0; case => v1 v2 //=.
by move/andP; elim => /eqP -> /eqP ->.
+ move=> v v0; case => v1 v2 //=.
by move/andP; elim => /eqP -> /eqP ->.
+ move=> f H; case => f0 //=.
by move/H => ->.
+ move=> f H f0 H0; case => f1 f2 //=.
by move/andP; elim => /H -> /H0 ->.
+ move=> f H f0 H0; case => f1 f2 //=.
by move/andP; elim => /H -> /H0 ->.
+ move=> f H f0 H0; case => f1 f2 //=.
by move/andP; elim => /H -> /H0 ->.
+ move=> v f H; case => v0 f0 //=.
by move/andP; elim => /eqP -> /H ->.
+ move=> v f H; case => v0 f0 //=.
by move/andP; elim => /eqP -> /H ->.*)
Qed.
(* See: *)
(* Handbook of Practical Logic, 6.6 Proving tautologies by inference *)
(* coq-8.4pl5/tactics/tauto.ml4 *)
(* propositional tautology *)
Fixpoint tautoFml F G {struct F} :=
match F, G with
| equalityS m0 m1, equalityS n0 n1 => (m0 == n0) && (m1 == n1)
| membershipS m0 m1, membershipS n0 n1 => (m0 == n0) && (m1 == n1)
| notS F0, notS G0 => eqFml F0 G0
| orS F0 F1, orS G0 G1 => eqFml F0 G0 && eqFml F1 G1
| andS F0 F1, andS G0 G1 => eqFml F0 G0 && eqFml F1 G1
| implS F0 F1, implS G0 G1 => eqFml F0 G0 && eqFml F1 G1
| forallS m F0, forallS n G0 => (m == n) && eqFml F0 G0
| existsS m F0, existsS n G0 => (m == n) && eqFml F0 G0
| _, _ => false
end.
Canonical Fml_eqMixin := EqMixin eqFmlP.
Canonical Fml_eqType := Eval hnf in EqType Fml Fml_eqMixin.
Implicit Arguments eqFmlP [x y].
Prenex Implicits eqFmlP.
Lemma eqFmlE : eqFml = eq_op. Proof. by []. Qed.
Lemma Fml_irrelevance (F G : nat) (E E' : F = G) : E = E'.
Proof. exact: eq_irrelevance. Qed.
(* eqType準備ここまで *)
Definition X : Fml := 0 _=_ 0 ∧ 1 _=_ 1.
Definition is_atomic (f : Fml) : bool :=
match f with
| equalityS x y => true
| membershipS x y => true
| _ => false
end.
Eval compute in (is_atomic (0 _=_ 0)).
Definition is_bounded_qf (f : Fml) : bool :=
match f with
| forallS x f0 =>
match f0 with
| implS f0 f1 =>
match f0 with
| membershipS z w => (z == x)
| _ => false
end
| _ => false
end
| existsS x f0 =>
match f0 with
| implS f0 f1 =>
match f0 with
| membershipS z w => (z == x)
| _ => false
end
| _ => false
end
| _ => false
end.
Eval compute in is_bounded_qf (∀1 , (1 _=_ 0)).
(* ====> false *)
Eval compute in is_bounded_qf (∀1 , (1 _∈_ 2)).
(* ====> false *)
Example testcase0: is_bounded_qf (∀1 , ((1 _∈_ 2) → (1 _=_ 3))).
(* ====> true *)
Proof.
simpl.
reflexivity.
Qed.
Definition is_not_qf (f : Fml) : bool :=
match f with
| forallS x f0 => false
| existsS x f0 => false
| _ => true
end.
Fixpoint is_quantifier_free (f : Fml) : bool :=
match f with
| forallS _ _ => false
| existsS _ _ => false
| _ => allFml is_quantifier_free f
end.
Fixpoint is_quantifier_free (f : Fml) : bool :=
match f with
| equalityS x y => true
| membershipS x y => true
| notS f0 => (is_quantifier_free f0)
| orS f0 f1 => (is_quantifier_free f0) && (is_quantifier_free f1)
| andS f0 f1 => (is_quantifier_free f0) && (is_quantifier_free f1)
| implS f0 f1 => (is_quantifier_free f0) && (is_quantifier_free f1)
| forallS x f0 => false
| existsS x f0 => false
end.
Require Import Datatypes.
Check (sum unit unit).
Definition hoge (a : bool) : (unit + unit) :=
match a with
| true => inl tt
| false => inr tt
end.
Definition bound_var (f : Fml) : (Var+unit) :=
match f with
| implS f0 f1 =>
match f0 with
| membershipS z w => inl z
| _ => inr tt
end
| _ => inr tt
end.
Definition is_membership f :=
match f with
| membershipS _ _ => true
| _ => false
end.
Fixpoint is_Σ_0 (f : Fml) : bool :=
match f with
| equalityS x y => true
| membershipS x y => true
| notS f0 => (is_Σ_0 f0)
| orS f0 f1 => (is_Σ_0 f0) && (is_Σ_0 f1)
| andS f0 f1 => (is_Σ_0 f0) && (is_Σ_0 f1)
| implS f0 f1 => (is_Σ_0 f0) && (is_Σ_0 f1)
| forallS x f0 =>
match f0 with
| implS f00 f01 => is_membership f00 && (is_Σ_0 f01)
| _ => false
end
| existsS x f0 =>
match f0 with
| andS f00 f01 => is_membership f00 && (is_Σ_0 f01)
| _ => false
end
end.
Axiom membership : SET -> SET -> bool.
Notation "x ∈ y" := (membership x y) (at level 20).
Axiom equality : SET -> SET -> bool.
(*
Axiom V : CLASS.
Axiom SET_Axiom : forall X : CLASS, (exists Y : CLASS, X ∈ Y) -> X ∈ V.
Axiom emptyset : CLASS.
Axiom emptyset_axiom : (emptyset ∈ V).
Axiom one : CLASS.
Axiom one_axiom : (emptyset ∈ one).
*)
Definition is_finOrdSet (x : finType) :=
exists n : nat, x = ordinal_finType n.
Definition is_AssignOf (M : SET) (n : nat) (f : 'I_n -> SET) :=
forall i , (f i) ∈ M.
Check {set ordinal_finType 0}.
Check [set set0] :|: [set set0].
Check FinSet [ffun x : 'I_3 => false].
Eval compute in (set_type (ordinal_finType 0)) = ordinal_finType 1.
Definition natSet_of_nat (n : nat) :=
[set: ordinal_finType n].
Check natSet_of_nat.
Check @Ordinal 10 11.
Check [set @Ordinal 10 1 erefl; @Ordinal 10 2 erefl].
Eval compute in (max 10 9).+1.
Check forall (x y:nat),
let n := (maxn x.+1 y.+1) in
(@Ordinal (maxn x.+1 y.+1) x (leq_maxl x.+1 y.+1)) = (@Ordinal (maxn x.+1 y.+1) y (leq_maxr x.+1 y.+1)).
(* sumSet x y := {x , y} of type 'I_{maxn x+1 y+1} *)
Definition sumSet (x y : Var) :=
let n := (maxn x.+1 y.+1) in
[set (@Ordinal (maxn x.+1 y.+1) x (leq_maxl x.+1 y.+1)) ; (@Ordinal (maxn x.+1 y.+1) y (leq_maxr x.+1 y.+1))].
Check sumSet.
Fixpoint free_VarSet (f : Fml) :=
match f with
| equalityS x y => sumSet x y
| membershipS x y => sumSet x y
| notS f0 => (free_VarSet f0)
| orS f0 f1 => (free_VarSet f0) setU (free_VarSet f1)
| andS f0 f1 => (free_VarSet f0) setU (free_VarSet f1)
| implS f0 f1 => (free_VarSet f0) setU (free_VarSet f1)
| forallS x f0 =>
match f0 with
| implS f00 f01 => is_membership f00 && (is_Σ_0 f01)
| _ => false
end
| existsS x f0 =>
match f0 with
| andS f00 f01 => is_membership f00 && (is_Σ_0 f01)
| _ => false
end
end.
Fixpoint satisfaction (f : Fml) (M : SET) ( : Prop :=
match f with
| equalityS x y => equality (s x) (s y)
| membershipS x y => membership (nth emptyset s x) (nth one s y)
| notS f0 => ~(satisfaction f0 M s)
| orS f0 f1 => (satisfaction f0 M s) \/ (satisfaction f1 M s)
| andS f0 f1 => (satisfaction f0 M s) /\ (satisfaction f1 M s)
| implS f0 f1 => (satisfaction f0 M s) -> (satisfaction f1 M s)
| forallS x f0 => forall y : CLASS, (y ∈ M) -> (satisfaction f0 M (set_nth emptyset s x y))
| existsS x f0 => exists y : CLASS, (y ∈ M) /\ (satisfaction f0 M (set_nth emptyset s x y))
end.
Notation "M |= f $ s" := (satisfaction f M s) (at level 30).
Definition transitive (M : CLASS) : Prop :=
forall x y, (x ∈ M) -> (y ∈ x) -> (y ∈ M).
Definition seq_from (s : seq CLASS) (M : CLASS) : bool :=
let p := (fun x => (x ∈ M)) in
all p s.
Definition absolute_forMN (f : Fml) (M : CLASS) (N: CLASS) : Prop :=
forall s : seq CLASS, (seq_from s M) ->
((M |= f $ s) <-> (N |= f $ s)).
Definition absolute_forM (f : Fml) (M : CLASS) : Prop :=
absolute_forMN f M V.
Lemma Absoluteness_membership : forall x y : Var, forall (M : CLASS), (transitive M) -> absolute_forM (x _∈_ y) M.
Proof.
move=>x y M.
move=> Htrans.
move=> s.
move=> HsinM.
have: (nth emptyset s x) ∈ M.
have: forall n : Var, (find(nth emptyset x n) ∈ M.