Part 1: In-Car Networking

PROTOCOLS: K-LINE, CAN, AND LIN

K-LINE

[C2X] Summer 2014

Protocols: K-Line, CAN, and LIN

dl

The K-Line Bus

%

<~ The K-Line Bus
+ Industry standard of the 80s, much later standardized as ISO 9141
+ Numerous variants exist (esp. upwards of Link Layer)
+ Lecture focuses on ISO 14230: The KWP 2000 (Keyword Protocol)
+ Specifies Physical and Link layers
+ Bidirectional bus, communicating over 1 wire (the K Line)

r-H—-—-—-=----=_/=,-,=-=-=-=- == A r-—=-=-=-=-= A
| On-Board Diagnostic Link ~ +Vpat | | Service Scan Tool |
45V(2) or
I | IEnd of Production Linel
I D(1) I I Programming I
' *+Vop N | or
| MCU 33290 500 Q(2) | | System Checking |
| Ve ko : ; 510Q |
5.0 V BB 1 _L 1 0)) J—
[o nF(3 1
I VCC 1 VDD g () | | | |
I T 7 Lo o |
: 1.0nF 50nF@) I lie '
|
I
|

[C2X] Summer 2014

Protocols: K-Line, CAN, and LIN

% The K-Line Bus

< The K-Line Bus (contd.)
+ Optional: additional unidirectional L Line
= Allows mixed networks (using only K Line / using both K+L Line)
+ Mostly used for connecting ECU <> Tester, seldom ECU < ECU
+ Logic levels are relative to on board voltage (< 20% and > 80%)

+ Bit transmission compatible to UART (Universal Asynchronous
Receiver Transmitter): 1 start bit, 8 data bits, 1 stop bit, optional
parity bit

+ Bit rate 1.2 kBit/s ... 10.4 kBit/s

= Dependent on ECU, not Bus
= Master must be able to handle multiple bit rates

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 4

% The K-Line Bus

< Protocol
+ Connection establishment (2 variants)
= 5 Baud init

* Master sends destination address (using 5 Bit/s)

e ECU answers: 0x55 (01010101), keyword low Byte, keyword high Byte
(with desired data rate)

* Master derives bit rate from pattern, sends Echo (inv. High Byte)
* ECU sends Echo (inv. Destination address)

Tester —» ECU ECU — Tester Tester - ECU ECU — Tester
> 300ms, ~2s <300ms < 2_0’rps < 2_0’rps < 2_0’rins < S_O’rps
K-Line Sync. Byte Keyword Keyword Inv. Keyword Inverted
Adress byte 55h LSB MSB MSB Adress byte
L-Line Adress byte
5 Bit/s Fixed bit rate, chosen by ECU, detected and adopted by master

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 5

%

The K-Line

Bus

< Protocol

+ Connection establishment (2 variants)
= Fast init (100 ms, Bitrate always 10,4 kBit/s)

K-Line

L-Line

* Master sends Wake Up pattern (25 ms low, 25 ms pause)

e Master sends Start Communication Request, includes dest address

e ECU answers with keyword, after max. 50 ms

* Keyword encodes supported protocol variants
takes values from 2000 .. 2031 (KWP 2000)

>55ms, 25ms , 25ms < 50m_s|
Start Communication Start Communication
Service Request Service Request
(w/ Keyword)
Wake Up Fixed Bit Rate 10,4 kbit/s

[C2X] Summer 2014

Protocols: K-Line, CAN, and LIN

% The K-Line Bus

< Protocol

+ Communication always initiated by master
= Master sends Request, ECU sends Response
+ Addressing
= Address length is 1 Byte
= Either: physical addressing (identifies specific ECU)

= Or: functional addressing (identifies class of ECU)
e.g., engine, transmission, ...

= Differentiated via format byte
+ Duration of single transmission at 10.4 kBit/s
= best case: 250 ms, worst case 5.5s

= j.e., application layer data rate < 1 KB/s

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

g The K-Line Bus &

< Protocol header

+ Format Byte
= Encodes presence and meaning of address bytes

= Short packet length can be encoded in format byte; length byte then
omitted

+ Destination address
+ Source address
+ Length

+ Payload
= Up to 255 Byte

= First Byte: Service Identifier (SID) m

4+ Checksum Format byte Destination
= Sum of all Bytes (mod 256) Source Length
Payload...
Checksum

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 8

%

The K-Line Bus

% Service lIdentifiers

+ Standard Service Identifiers
= Session Initialization and teardown

* 0x81h Start Communication Service Request
* 0x82h Stop Communication Service Request
= Configuring protocol timeouts
* 0x83h Access Timing Parameter Request (optional)

+ Other SIDs are vendor defined
= Passed on (unmodified) to application layer

= Typical use: two SIDs per message type
* First SID: Positive reply
e Second: Negative reply

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

% The K-Line Bus

<~ Error handling
+ If erroneous signal arrives
= ECU ignores message
= Master detects missing acknowledgement
= Master repeats message

+ If invalid data is being sent
= Application layer sends negative reply
= Master / ECU can react accordingly

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

10

g The K-Line Bus IL(‘

< Use in On Board Diagnostics (OBD)

+ OBD uses stricter protocol variant
+ Bit rate fixed to 10.4 kBit/s

+ No changes in timing
+

+
o
2]
0
-—
)

BAT-
CAN-H
K-Line

Header no longer variable
= Length byte never included
= Address always included
+ Max. Message length is 7 Byte

+ Shall use
logical addressing by tester,
physical addressing by ECUs

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

Controller Area Network

CAN

[C2X] Summer 2014

Protocols: K-Line, CAN, and LIN

12

% The CAN Bus

<~ The CAN Bus
+ ,Controller Area Network“ (1986)
+ Network topology: Bus

+ Many (many) physical layers

+ Common:
= Up to 110 nodes
= At 125 kBit/s: max. 500m

+ Always:
+ Two signal levels

= |ow (dominant)
= high (recessive)

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 13

g The CAN Bus

< The CAN Bus

+ In the following: ISO 11898
= Low Speed CAN (up to 125 kBit/s)
= High Speed CAN (up to 1 MBit/s)
+ Specifies OSl layers 1 and 2
= Higher layers not standardized by CAN,
covered by additional standards and conventions
= E.g., CANopen
+ Random access, collision free

= CSMA/CR with Bus arbitration
(sometimes called CSMA/BA
— bitwise arbitration) uC

ECU 1 ECU 2 ECUn

CAN
Controller

Transceiver

+ Message oriented

+ Does not use destination addresses

CAN_H
= |mplicit Broadcast/Multicast
120 Q CAN_L

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 14

g The CAN Bus IL(‘

< Physical layer (typical)
+ High Speed CAN

= 500 kBit/s
= Twisted pair wiring
Wire 1
o5 A
25V N / -
15V Wire 2

= Branch lines max. 30 cm

= Terminating resistor mandated (120 Q)

= Signal swing 2V

= Error detection must happen within one Bit’s time
= bus length is limited:

1 MBit/ s

data rate

[<50m-

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 15

The CAN Bus

< Physical layer (typical)
+ Low Speed CAN
= Up to 125 kBit/s
Standard two wire line suffices

No restriction on branch lines

Terminating resistors optional

Signal swing 5V

+ Single Wire CAN
= 83 kBit/s
= One line vs. ground
= Signal swing 5V

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 16

% CAN in Vehicular Networks

< Bit Timing
+ Times derived from clock time (Quantum) T,

+ Bit time T, consists of sync segment Ty .., Propagation segment

Toropsegr phase segments Tohasesegls | phaseseg? (can be adapted by
controller for synchronization)

+ Tsyncseg® Trropseg MUSt be longer than 2x propagation delay

+ Signal sampled between Ty eseq1 aNd Ty ogeseqr
+ Standard recommends, e.g. at 500 kbps, To=125ns, T, ;=16 T,

TSyncSGig= 1 7-Q 7-PropSeg= 1.8 7-Q 7-PhaseSegl= 1.8 7-Q I TPhaseSegZ - r?ax 2 7-Q
> N > >
! ! " g g
$ Ty=4...197, 1 4
I ! g
Bit begins Signal Sampled Bit ends

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 17

%

CAN in Vehicular Networks

< Address-less communication

+ Messages carry 11 Bit or 29 Bit message identifier
+ Stations do not have an address, frames do not contain one
+ Stations use message identifier to decide whether a message is
meant for them
+ Medium access using CSMA/CR with bitwise arbitration
+ Link layer uses 4 frame formats
Data, Remote (request), Error, Overload (flow control)
+ Data frame format:
Start Control Bus
Bit Bits Idle
11+1 or 29+3 Bit : 15 bit | Acknowledge &
Message Identifier 6 bit| Data 0., . . 8 Byte CRC [End of Frame
: ;: ;: ;‘. >
Header, 19 or 39 bit Payload, 0 ... 64 bit Trailer, 25 bit >3 bit

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

18

%

CAN in Vehicular Networks

< CSMA/CR with bitwise arbitration
+ Avoids collisions by priority-controlled bus access
+ Each message contains identifier corresponding to its priority

+ ldentifier encodes “0” dominant and “1” recessive:
concurrent transmission of “0” and “1” results in a “0”

+ Bit stuffing: after 5 identical Bits one inverted Stuff-Bit is inserted
(ignored by receiver)

+ When no station is sending the bus reads “1” (recessive state)

+ Synchronization happens on bit level,
by detecting start bit of sending station

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 19

% CAN in Vehicular Networks

< CSMA/CR with bitwise arbitration
+ Wait for end of current transmission

= wait for 6 consecutive recessive Bits
+ Send identifier (while listening to bus)
+ Watch for mismatch between transmitted/detected signal level

= Means that a collision with a higher priority message has occurred
= Back off from bus access, retry later

+ Realization of non-preemptive priority scheme

+ Real time guarantees for message with highest priority
= j.e., message with longest “0”-prefix

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 20

g CAN in Vehicular Networks

< CSMA/CR with bitwise arbitration
+ Example (recall: “0” dominant, “1” recessive)

13
]

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

21

% The CAN Bus

< CSMA/CR with bitwise arbitration
+ Client 2 recognizes bus level mismatch, backs off from access

cent1 | | [__ |~ ns

cient2 | || .

cent3 | | || ns

Bus _|_ ______________ _-I_

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

% The CAN Bus

<& CSMA/CA with bitwise arbitration (CSMA/CR)

+ Client 1 recognizes bus level mismatch, backs off from access

Client 1 _|_ ______________ N

cient2 | || .

Client 3 _|_ ______________ NN |_

Bus (.| __ 1 LI

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

% The CAN Bus

<& CSMA/CA with bitwise arbitration (CSMA/CR)

+ Client 3 wins arbitration

Client 1 _|_ ______________ N

cient2 | || .

Client 3 _|_ ______________ N ;I_

Bus |1 __ 1 A O T

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

% The CAN Bus

<& CSMA/CA with bitwise arbitration (CSMA/CR)
+ Client 3 starts transmitting data

Client 1 _|_ ______________ N

cient2 | || .

Client 3 _|_ ______________ 1

Bus | L[__ [) I

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

% The CAN Bus: TTCAN

< Aside: Time-Triggered CAN (TTCAN)
+ 1SO 11898-4 extends CAN by TDMA functionality
+ Solves non-determinism of regular CAN
= Improves on mere “smart” way of choosing message priorities
+ One node is dedicated “time master” node
+ Periodically sends reference messages starting “basic cycles”

+ Even if time master fails, TTCAN keeps working
= Up to 7 fallback nodes
= Nodes compete for transmission of reference messages
= Chosen by arbitration

Reference Time Time e oo Next Ref.
Message Window 1 Window 2 Message

Basic cycle

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 26

% The CAN Bus: TTCAN

<~ Aside: TTCAN Basic Cycle

+ Basic cycle consists of time slots

= Exclusive time slot
* Reserved for dedicated client

= Arbitration time slot
* Regular CAN CSMA/CR with bus arbitration

+ Structure of a basic cycle arbitrary, but static

+ CAN protocol used unmodified
=>» Throughput unchanged

+ TTCAN cannot be seen replacing CAN for real time applications
= |nstead, new protocols are being used altogether (e.g., FlexRay)

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 27

g The CAN Bus &

< Message filtering
+ Acceptance of messages determined by message identifier

+ Uses two registers
= Acceptance Code (bit pattern to filter on)
= Acceptance Mask (“1” marks relevant bits in acceptance code)

Acceptance Code Reg.
Acceptance Mask Reg. 1 1 1 1 1 1 1 0 0 O O
Resulting FilterPattern 0 1 1 0 1 1 1 X X X X

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 28

% The CAN Bus

<~ Data format
+ NRZ
+ Time synchronization using start bit and stuff bits (stuff width 5)
+ Frame begins with start bit

+ Message identifier 11 Bit (CAN 2.0A), now 29 Bit (CAN 2.0B)

g---nn---q

Identifier

Control Bits
Data

CRC
Acknowledge & End of Frame

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

29

% The CAN Bus

< Data format
+ Control Bits

= Message type (Request, Data, Error, Overload)
= Message length

ol | | | | | |78/ | | | | | |15
SB

|dentifier

Control Bits

Data

CRC
Acknowledge & End of Frame

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

30

% The CAN Bus

< Data format

+ Payload
= Restriction to max. 8 Byte per message
= Transmission time at 500 kBit/s: 260 us (using 29 Bit ID)
= j.e., usable data rate 30 kBit/s

ol | | | | | |78/ | | | | | |15
SB

|dentifier

Control Bits

Data

CRC
Acknowledge & End of Frame

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

31

% The CAN Bus

< Error detection (low level)
+ Sender checks for unexpected signal levels on bus
+ All nodes monitor messages on the bus

= All nodes check protocol conformance of messages
= All nodes check bit stuffing

+ Receiver checks CRC

+ If any(!) node detects error it transmits error signal
= 6 dominant Bits with no stuffing

+ All nodes detect error signal, discard message

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 32

% The CAN Bus

< Error detection (high level)

+ Sender checks for acknowledgement

= Receiver transmits dominant “0”
during ACK field of received message

+ Automatic repeat of failed transmissions

+ If controller finds itself causing too many errors

= Temporarily stop any bus access

+ Remaining failure probability ca. 101!

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

33

% The CAN Bus: Transport Layers IL(‘

< Not covered by ISO 11898 (CAN) standards

+ Fragmentation

+ Flow control
+ Routing to other networks

< Add transport layer protocol
+ ISO-TP
= SO 15765-2
+ TP2.0
= |ndustry standard
+ ..

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 34

g The CAN Bus: ISO-TP &

< ISO-TP: Header

+ Optional: 1 additional address Byte
= Regular addressing
* Transport protocol address completely in CAN message ID
= Extended addressing

* Uniqueness of addresses despite non-unique CAN message ID

e Part of transport protocol address in CAN message ID,
additional address information in first Byte of TP-Header

+ 1 to 3 PCI Bytes (Protocol Control Information)
= First high nibble identifies one of 4 types of message
= First low nibble and addl. Bytes are message specific

0o | 1 2 | 3 | 4 | 5 | 6 | 7

(opt)Addl. PCI PCI

Address high low (opt) Addl. PCI Bytes Payload

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 35

§ The CAN Bus: ISO-TP &

< ISO-TP: Message type “Single Frame”
+ 1 Byte PCI, high nibble is 0
+ low nibble gives number of Bytes in payload

+ PCl reduces frame size from 8 Bytes to 7 (or 6) Bytes,
throughput falls to 87.5% (or 75%, respectively)

+ No flow control

Payload

(Address) 0 Payload

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 36

g The CAN Bus: ISO-TP &

< ISO-TP: Message type ,First Frame“
+ 2 Bytes PCI, high nibble is 1
+ low nibble + 1 Byte give number of Bytes in payload

+ After First Frame, sender waits for Flow Control Frame

(Address) 1 Payload

< ISO-TP: Message type ,,Consecutive Frame*“
+ 1 Byte PCl, high nibble is 2
+ low nibble is sequence number SN (counts upwards from 1)

= Application layer can detect packet loss

+ No additional error detection at transport layer

(Address) 2 Payload

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 37

% The CAN Bus: ISO-TP

< ISO-TP: Message type ,,Flow Control Frame*
+ 3 Bytes PCl, high nibble is 3
+ low nibble specifies Flow State FS
+ FS=1: Clear to Send

" Minimum time between two Consecutive Frames must be ST

= Sender may continue sending up to BS Consecutive Frames,
then wait for new Flow Control Frame

+ FS=2: Wait
= Qverload
= Sender must wait for next Flow Control Frame

+ Byte 2 specifies Block Size BS
+ Byte 3 specifies Separation Time ST

(Address) 3

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

38

% The CAN Bus: TP 2.0

< TP 2.0

+ Connection oriented
+ Communication based on channels
+ Specifies Setup, Configuration, Transmission, Teardown

+ Addressing

= Every ECU has unique logical address;
additional logical addresses specify groups of ECUs

= for broadcast und channel setup:
logical address + offset = CAN message identifier

= Channels use dynamic CAN message identifier

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

39

% The CAN Bus: TP 2.0

< TP 2.0: Broadcast
+ Repeated 5 times (motivated by potential packet loss)
+ Fixed length: 7 Byte

+ Byte O:
= |ogical address of destination ECU
+ Byte 1: Opcode
= 0x23: Broadcast Request
= 0x24: Broadcast Response
+ Byte 2, 3, 4:
= Service ID (SID) and parameters
+ Byte 5, 6:
= Response: 0x0000
= No response expected: alternates between 0x5555 / OXAAAA

o0 | 1 | 2 | 3 | 4 | 5 | 6

Dest Opcode SID, Parameter 0x55 0x55

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 40

% The CAN Bus: TP 2.0

< TP 2.0: channel setup
+ Byte O:
= |ogical address destination ECU
+ Byte 1: Opcode
= 0xCO: Channel Request
= 0xDO: Positive Response
= OxD6 .. OxD8: Negative Response
+ Byte 2, 3:RXID
= Validity nibble of Byte 3 is O (1 if RX ID not set)
+ Byte 4,5: TXID
= Validity nibble of Byte 5is O (1 if TX ID not set)
+ Byte 6: Application Type
= cf. TCP-Ports

Dest Opcode RXID TXID

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

41

% The CAN Bus: TP 2.0

< TP 2.0: channel setup (I1)

+ Opcode 0xCO: Channel Request
= TXID: CAN msg ID requested by self
= RX ID: marked invalid
+ Opcode 0xDO: Positive Response
= TX ID: CAN msg ID requested by self
= RX ID: CAN msg ID of original sender
+ Opcode 0xD6 .. OxD8: Negative Response
= Reports errors assigning channel (temporary or permanent)
= Sender may repeat Channel Request
+ After successful exchange of Channel Request/Response:

dynamic CAN msg IDs now assigned to sender and receiver
next message sets channel parameters

Dest 0xCO TXID

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 42

% The CAN Bus: TP 2.0

< TP 2.0: set channel parameters
+ Byte 0: Opcode

= OxAO: Channel Setup Request (Parameters for channel to initiator)
= 0xAl: Channel Setup Response (Parameter for reverse channel)
+ Byte 1: Block size
= Number of CAN messages until sender has to wait for ACK
+ Byte 2, 3, 4, 5: Timing parameters
= E.g., minimal time between two CAN messages

< TP 2.0: misc. channel management and teardown

+ Byte 0: Opcode
= 0xA3: Test — will be answered by Connection Setup Response
= 0xA4: Break — Receiver discards data since last ACK
= 0xA5: Disconnect — Receiver responds with disconnect, too

0xAO0 Timing

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 43

§ The CAN Bus: TP 2.0 &

< TP 2.0: Data transmission via channels
+ Byte 0, high nibble: Opcode
= MSB=0 - Payload
* /AR=0 - Sender now waiting for ACK
« EOM-=1 - Last message of a block

= MSB=1 - ACK message only (no payload)

e RS=1-ready for next message (=@ flow control)

+ Byte O, low nibble

= Sequence number Opcode Nibble

+ Bytes 1..7:Payload 0 0 /AR EOM
1 0 RS 1
-_--!—--n—
Payload

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 44

Local Interconnect Network

LIN

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

45

The LIN Bus

%

< Local Interconnect Network (LIN)

< 1999: LIN 1.0
< 2003: LIN 2.0 LOCAL INTERCONNECT NETWORK

+ Numerous extensions
+ Backwards compatible (only)
I
< Goal of LIN: be much cheaper than low speed CAN

+ Only reached partway
< specifies PHY and MAC Layer, API

Application
API ¥ *
Diagnostic Signal interaction

Protocol ¥ x

frame handler
Physical

LIN bus line
46

Protocols: K-Line, CAN, and LIN

[C2X] Summer 2014

The LIN Bus

< Very similar to K-Line Bus
< Master-slave concept with self synchronization

+ no quartz needed
+ lax timing constraints

< LIN master commonly also part of a CAN bus
+ LIN commonly called a sub bus

< Bidirectional one-wire line, up to 20 kBit/s
< Bit transmission UART compatible

+ 1 Start Bit, 8 Data Bits, 1 Stop Bit
< Message oriented "

+ No destination address

| Slave | | Slave | R | Slave |
| Function | | Function | | Function |

&
<

v

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 47

The LIN Bus

< Rudimentary error detection
+ Sender monitors bus
+ Aborts transmission on unexpected bus state

< No error correction
<~ Starting with LIN 2.0: Response Error Bit

+ Should be contained in periodic messages
+ Set (once) if slave detected an error in last cycle

< Static slot schedule in the master

+ “Schedule Table”

+ Determines cyclic schedule of messages transmitted by master
— Bus timing mostly deterministic

+ Slaves do not need to know schedule
—> can be changed at run-time

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 48

The LIN Bus

%

<> Data request
+ Sync Break (=13 Low Bits, 1 High Bit)
= Not UART compliant = uniquely identifiable
+ Sync Byte 0x55 (01010101)
= Synchronizes bit timing of slave
+ LIN Identifier (6 data Bits (I, to I) + 2 parity Bits)
= Encodes response’s expected message type and length

= 0x00 .. 0x3B: application defined data types, 0x3C .. 0x3D: Diagnosis,
Ox3E: application defined, Ox3F: reserved

= Parity Bits: 1,® I, @ I, @ [,and=(l; ® I3 ® |, ® [)

Bus Idle > 1 bit triggers Data Response
}-‘ Sync Break Sync LIN Data Data ._. Checksum
2 13 bit Byte 55h Identifier byte byte
L J L J
Y Y
Data request, sent by master Data response, sent by slave

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 49

% The LIN Bus

<> Data response

+ Slave responds with up to 8 Bytes of data
= | SB first, Little Endian
= |ength was defined by LIN Identifier

+ Frame ends with checksum
= LIN 1.3: Classic Checksum (only data bytes)
= LIN 2.0: Enhanced Checksum (data bytes + Identifier)

= Checksum is sum of all Bytes (mod 256),
plus sum of all carries

Bus Idle > 1 bit triggers Data Response
SynC Break Sync LIN Data Data
}-‘ 2 13 bit Byte 55h Identifier byte byte Checksum
L J L J
Y —~—
Data request, sent by master Data response, sent by slave

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 50

%

The LIN Bus

< Types of requests
+ Unconditional Frame
+ Event Triggered Frame
+ Sporadic Frame
+ ..

<~ Unconditional Frame

+ Most simple frame type

+ Designed for periodic polling of specific data point

+ Exactly one slave answers

+ LIN is a single master system = timing of unconditional frames

fully deterministic

+ Sample use case:
= Request “did state of front left door contact change?” every 15 ms
= Receive negative reply by front left door ECU every 15 ms

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 51

%

The LIN Bus

< Types of requests
+ Unconditional Frame
+ Event Triggered Frame
+ Sporadic Frame
+ ..

<~ Event Triggered Frame
+ Simultaneous polling of multiple slaves, slave answers if needed
+ Collisions possible (= non-determinism), detect by corrupt. data
= master switches to individual polling via Unconditional Frames
+ Use whenever slaves unlikely to respond
+ Sample use case:

= Request “did state of a door contact change?” every 15 ms
= Change in state unlikely, simultaneous change extremely unlikely

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 52

%

The LIN Bus

< Types of requests
+ Unconditional Frame
+ Event Triggered Frame
+ Sporadic Frame
+ ..

<~ Sporadic Frame
+ Sent (by master) only when needed
+ Shared schedule slot with other Sporadic Frames
+ Use whenever polling for specific data only seldom needed
+ If more than one Sporadic Frame needs to be sent, master needs
to decide for one = no collision, but still non-deterministic
+ Sample use case:
= Request ,,power window fully closed?” every 15 ms
= ...only while power window is closing

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN 53

%

The LIN Bus

< Sample schedule table

__Slot | ___Type ___|Signal _____

1
2
3
4
)

J

Unconditional
Unconditional
Unconditional
Event triggered
Sporadic

AC

Rain sensor
Tire pressure
Power window

(unused)
-OR-

Fuel level
-OR-

Outside temp

[C2X] Summer 2014

Protocols: K-Line, CAN, and LIN

54

%

The LIN Bus

<~ Doing Off-Board-Diagnosis of LIN ECUs
+ Variant 1: Master at CAN bus responds on behalf of ECU on LIN

Keeps synchronized state via LIN messages

+ Variant 2: Master at CAN bus tunnels, e.g., KWP 2000 messages

Standardized protocol

LIN dest address is Ox3C (Byte 1 is ISO dest address)

Dest ECU (according to ISO address) answers with address 0x3D
Independent of payload, LIN frame padded to 8 Bytes

LIN slaves have to also support KWP 2000

Contradicts low cost approach of LIN

“Diagnostic Class” indicates level of support

[C2X] Summer 2014

Protocols: K-Line, CAN, and LIN 55

Main Takeaways

< Overall
+ Design goals

+ Message orientation vs. address
orientation,

Addressing schemes
Medium access

Flow control

+ + + 4+

Real time guarantees and
determinism

<% K-Line

+
+
+

< CAN

+

+
+

< LIN

+ 4+ +

Mainly for diagnostics
Transmission uses UART signaling

Communication using Request-
Response pattern

Still standard bus in vehicles
Message oriented
CSMA with bitwise arbitration
= |mpact on determinism
= TTCAN (TDMA)
Error detection
Transport layer: ISO-TP vs. TP 2.0
= Flow control, channel concept

Goals

Deployment as sub bus
Message types and scheduling
Determinism

[C2X] Summer 2014 Protocols: K-Line, CAN, and LIN

56

