forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FunctionsManual.cpp
5304 lines (4777 loc) · 205 KB
/
FunctionsManual.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <torch/csrc/autograd/FunctionsManual.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/autograd/functions/utils.h>
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/BatchedTensorImpl.h>
#include <ATen/core/grad_mode.h>
#include <ATen/core/Reduction.h>
#include <ATen/Dispatch.h>
#include <ATen/ExpandUtils.h>
#include <ATen/native/IndexingUtils.h>
#include <ATen/native/LinearAlgebraUtils.h>
#include <ATen/native/Activation.h>
#include <ATen/ScalarOps.h>
#include <ATen/SparseTensorUtils.h>
#include <ATen/Utils.h>
#include <ATen/WrapDimUtils.h>
#include <ATen/WrapDimUtilsMulti.h>
#include <ATen/core/grad_mode.h>
#include <c10/core/TensorOptions.h>
#include <c10/util/accumulate.h>
#include <c10/util/irange.h>
#include <ATen/TensorSubclassLikeUtils.h>
#include <c10/util/SmallBuffer.h>
#include <ciso646>
#include <algorithm>
#include <numeric>
#include <functional>
// Helper functions for autogenerated code
// These used to be inlined into the codegened Functions.cpp
namespace torch {
namespace autograd {
namespace generated {
namespace details {
using at::Tensor;
using at::Scalar;
using at::IntArrayRef;
using at::TensorList;
using at::areAnyTensorSubclassLike;
const char* kCudnnDoubleBackwardMsg = "Double backwards is not supported for CuDNN RNNs due to limitations in the CuDNN API. To run double backwards, please disable the CuDNN backend temporarily while running the forward pass of your RNN. For example: \nwith torch.backends.cudnn.flags(enabled=False):\n output = model(inputs)";
Tensor apply_loss_reduction(const Tensor& unreduced, int64_t reduction) {
if (reduction == at::Reduction::Mean) {
return unreduced.mean();
} else if (reduction == at::Reduction::Sum) {
return unreduced.sum();
}
return unreduced;
}
bool isDefined(const c10::optional<Tensor>& t) {
return t.has_value() && t->defined();
}
Tensor toNonOptTensor(const c10::optional<Tensor>& t) {
return t.has_value() ? *t : Tensor();
}
Tensor toNonOptFwGrad(const c10::optional<Tensor>& t) {
return (t.has_value() && t->defined()) ? t->_fw_grad(/*level */ 0) : Tensor();
}
Tensor toNonOptPrimal(const c10::optional<Tensor>& t) {
return (t.has_value() && t->defined()) ? t->_fw_primal(/*level */ 0) : Tensor();
}
void copy_range(variable_list& out, IndexRange range, const Tensor & t) {
AT_ASSERT(range.second <= out.size());
AT_ASSERTM(range.second - range.first == 1, "inconsistent range for Tensor output");
out[range.first] = t;
}
void copy_range(variable_list& out, IndexRange range, at::ArrayRef<Tensor> t) {
AT_ASSERT(range.second <= out.size());
AT_ASSERTM(range.second - range.first == t.size(), "inconsistent range for TensorList output");
std::copy(t.begin(), t.end(), out.begin() + range.first);
}
Tensor copysign_tensor_self_backward(const Tensor & grad, const Tensor & self, const Tensor & result) {
auto ratio = result / self;
ratio.masked_fill_(self == 0, 0);
return grad * ratio;
}
template <typename T>
T not_implemented_base(const char* name, const char* reason) {
std::string msg = c10::str("the derivative for '", name, "' is not implemented.");
if (strlen(reason) > 0) {
msg = c10::str(msg, " ", reason);
};
TORCH_CHECK_NOT_IMPLEMENTED(false, msg);
}
Tensor not_implemented(const char* name, const char* reason) {
return not_implemented_base<Tensor>(name, reason);
}
std::vector<Tensor> not_implemented_list(const char* name, const char* reason) {
return not_implemented_base<std::vector<Tensor>>(name, reason);
}
Tensor maybe_multiply(const Tensor & t, const Scalar & s) {
bool is_one = false;
if (s.isFloatingPoint()) {
is_one = s.toDouble() == 1;
} else if(s.isIntegral(true)) {
is_one = s.toLong() == 1;
}
if (is_one) {
return t;
} else {
return t * s;
}
}
int64_t _safe_size(IntArrayRef sizes, IntArrayRef dim) {
int64_t size = 1;
if (sizes.size() == 0) {
return 1;
}
for (auto d : dim) {
d = at::maybe_wrap_dim(d, sizes.size());
size *= sizes[d];
}
return size;
}
Tensor handle_r_to_c(ScalarType self_st, Tensor gradient_result) {
if (!at::isComplexType(self_st) && gradient_result.is_complex()) {
// R -> C
return at::real(gradient_result);
}
return gradient_result;
}
Tensor handle_r_to_c(Tensor self, Tensor gradient_result) {
if (!self.is_complex() && gradient_result.is_complex()) {
// R -> C
return at::real(gradient_result);
}
return gradient_result;
}
Tensor restore_reduced_dims(const Tensor &output, IntArrayRef dims, bool keepdim) {
if (keepdim) {
return output;
}
int64_t total_dims = output.dim() + dims.size();
std::vector<int64_t> target_shape(total_dims, 0);
for (int64_t i : dims) {
if (i < 0) {
i = total_dims + i;
}
target_shape[i] = 1;
}
int64_t j = 0;
for (int64_t i : output.sizes()) {
while (target_shape[j] > 0) j++;
target_shape[j++] = i;
}
return output.reshape(target_shape);
}
Tensor scale_grad_by_count(const Tensor &grad, const Tensor &mask, IntArrayRef dims) {
return (grad / mask.sum(dims, true)) * mask;
}
std::tuple<Tensor, Tensor> _euclidean_dist_backward(const Tensor & grad, const Tensor & x1, const Tensor & x2, const Tensor & res) {
if (!grad.defined()) {
return std::tuple<Tensor, Tensor>(Tensor(), Tensor());
}
// handle case at 0 where we return a subgradient containing 0
Tensor ratio = grad / res;
ratio.masked_fill_(res == 0, 0);
return std::tuple<Tensor, Tensor>{
x1 * ratio.sum(-1, true) - ratio.matmul(x2),
x2 * ratio.sum(-2, false).unsqueeze(-1) - ratio.mT().matmul(x1)};
}
Tensor norm_backward(const Tensor& grad, const Tensor& self, const optional<Scalar> & p_, const Tensor& norm) {
return norm_backward(grad, self, p_, norm, {}, true);
}
Tensor norm_backward(Tensor grad, const Tensor& self, const optional<Scalar> & p_, Tensor norm, IntArrayRef dim, bool keepdim) {
size_t ndim = self.sizes().size();
double p = p_.value_or(2.0).toDouble();
Tensor self_scaled;
Tensor scale_v;
if (!keepdim && self.dim() != 0) {
grad = unsqueeze_multiple(grad, dim, ndim);
norm = unsqueeze_multiple(norm, dim, ndim);
}
if (p == 0.0) {
return at::zeros_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
} else if (p == 1.0) {
return self.sgn() * grad;
} else if (p == 2.0) {
self_scaled = self;
scale_v = grad / norm;
} else if (std::isinf(p)) {
const auto self_isnan = self.isnan();
const auto norm_isnan = norm.isnan();
const auto& self_and_norm_isnan = areAnyTensorSubclassLike({self, norm}) ?
self_isnan.logical_and(norm_isnan) :
self_isnan.logical_and_(norm_isnan);
Tensor is_eq_max = (self.abs() == norm).logical_or_(self_and_norm_isnan).type_as(self);
self_scaled = self.sgn() * is_eq_max;
Tensor nb_max = is_eq_max.count_nonzero(dim);
if (self.dim() != 0) {
nb_max = unsqueeze_multiple(nb_max, dim, ndim);
}
scale_v = grad / nb_max;
} else if (p < 2.0) {
self_scaled = self.sgn() * self.abs().pow(p - 1);
scale_v = grad / norm.pow(p - 1);
} else {
self_scaled = self * self.abs().pow(p - 2);
scale_v = grad / norm.pow(p - 1);
}
// handle case at 0 where we return a subgradient containing 0
scale_v.masked_fill_(norm == 0, 0);
return self_scaled * scale_v;
}
Tensor linalg_vector_norm_backward(Tensor grad, const Tensor& self, const Scalar& scalar_ord, Tensor norm, const optional<IntArrayRef>& opt_dim, bool keepdim) {
auto dim = opt_dim.value_or(IntArrayRef({}));
return norm_backward(grad, self, scalar_ord, norm, dim, keepdim);
}
Tensor pow_backward(Tensor grad, const Tensor & self, const Scalar & exponent) {
if (exponent.equal(0.0)) {
return at::zeros_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
} else {
auto grad_lambda = [&](auto exp) { return grad * (exp * self.pow(exp - 1)).conj(); };
Tensor out = (exponent.isComplex()) ? grad_lambda(exponent.toComplexDouble()) : grad_lambda(exponent.toDouble());
return handle_r_to_c(self, out);
}
}
Tensor pow_backward_self(Tensor grad, const Tensor & self, const Tensor & exponent) {
auto out = at::where(exponent == 0.0, at::zeros({}, grad.options()), grad * (exponent * self.pow(exponent - 1)).conj());
return handle_r_to_c(self, out);
}
// Caveats:
// We define d(a^b)/db at a = 0 and b < 0 to be -inf. This is due to
// d(a^b)/db -> -inf for a fixed b as a -> +0
// Currently, tensorflow defines d(a^b)/db = nan for a = 0 and b < 0.
//
// We define d(a^b)/db = 0 for a = 0 and b = 0 by continuity as
// d(a^b)/db = 0 for a > 0 and b -> +0.
// Currently, tensorflow agrees with us.
Tensor pow_backward_exponent(Tensor grad, const Tensor& self, const Tensor& exponent, Tensor result) {
Tensor cond;
if (exponent.is_complex()) {
auto is_real_exp = at::logical_and(at::imag(exponent) == 0, at::real(exponent) >= 0);
cond = at::logical_and(self == 0, is_real_exp);
} else {
cond = at::logical_and(self == 0, exponent >= 0);
}
auto out = grad * at::where(cond,
at::zeros({}, grad.options()),
(result * self.log()).conj());
return handle_r_to_c(exponent, out);
}
Tensor pow_backward_exponent(Tensor grad, const Scalar & base, const Tensor& exponent, Tensor result) {
auto grad_lambda = [](Tensor a, Scalar b) { return (a * b.log()).conj(); };
if (base.equal(0.0)) {
auto cond = [](auto exp) {
if (exp.is_complex()) {
return at::logical_and(at::imag(exp) == 0, at::real(exp) >= 0);
} else {
return exp >=0;
}
};
auto out = grad * at::where(cond(exponent),
at::zeros({}, grad.options()),
grad_lambda(result, base));
return handle_r_to_c(exponent, out);
} else {
auto out = grad * grad_lambda(result, base);
return handle_r_to_c(exponent, out);
}
}
Tensor angle_backward(Tensor grad, const Tensor& self) {
if (self.is_complex()) {
return at::where(self == 0.0, at::zeros({}, self.options()),
grad * self / self.abs().pow(2) * Scalar(c10::complex<double>{0.0, 1.0}));
} else {
return at::zeros_like(self, at::MemoryFormat::Preserve);
}
}
Tensor mvlgamma_backward(Tensor grad, const Tensor & self, int64_t p) {
Tensor args = at::arange(-p / 2. + 0.5, 0.5, 0.5, self.options());
args = args.add(self.unsqueeze(-1));
return grad * args.digamma_().sum(-1);
}
Tensor sgn_backward(Tensor result, Tensor grad, Tensor self) {
if (self.is_complex()) {
auto abs = at::abs(self);
// C -> C
// https://arxiv.org/pdf/1701.00392.pdf Section 4.20
return at::where(abs == 0.0, at::zeros({}, grad.options()), (grad/abs - (at::real(grad/self) * result)));
} else {
return at::zeros_like(self, at::MemoryFormat::Preserve);
}
}
Tensor mul_tensor_backward(Tensor grad, Tensor other, ScalarType self_st) {
auto out = grad * other.conj();
return handle_r_to_c(self_st, out);
}
Tensor div_tensor_self_backward(Tensor grad, Tensor other, ScalarType self_st, const c10::optional<c10::string_view>& rounding_mode) {
if (rounding_mode.has_value()) {
return at::zeros_like(grad, grad.options().dtype(self_st));
}
auto result = grad / other.conj();
return handle_r_to_c(self_st, result);
}
Tensor div_tensor_self_backward(Tensor grad, Tensor other, ScalarType self_st) {
return div_tensor_self_backward(grad, other, self_st, c10::nullopt);
}
Tensor div_tensor_other_backward(Tensor grad, Tensor self, Tensor other, const c10::optional<c10::string_view>& rounding_mode) {
if (rounding_mode.has_value()) {
return at::zeros_like(grad, grad.options().dtype(other.scalar_type()));
}
auto result = -grad * ((self / other) / other).conj();
return handle_r_to_c(other, result);
}
Tensor div_tensor_other_backward(Tensor grad, Tensor self, Tensor other) {
return div_tensor_other_backward(grad, self, other, c10::nullopt);
}
Tensor permute_backwards(const Tensor & grad, IntArrayRef fwd_dims) {
// invert the permutation
auto ndims = fwd_dims.size();
std::vector<int64_t> dims(ndims);
for(const auto i : c10::irange(ndims)) {
dims[at::maybe_wrap_dim(fwd_dims[i], ndims)] = i;
}
return grad.permute(dims);
}
Tensor rad2deg_backward(const Tensor& grad) {
constexpr double M_180_PI = 57.295779513082320876798154814105170332405472466564;
return at::mul(grad, at::native::wrapped_scalar_tensor(Scalar(M_180_PI)));
}
Tensor deg2rad_backward(const Tensor& grad) {
constexpr double M_PI_180 = 0.017453292519943295769236907684886127134428718885417;
return at::mul(grad, at::native::wrapped_scalar_tensor(Scalar(M_PI_180)));
}
Tensor unsqueeze_multiple(const Tensor & t, IntArrayRef dim, size_t n_dims) {
auto dims_to_unsqueeze = at::dim_list_to_bitset(dim, n_dims);
Tensor res = t;
for(const auto i : c10::irange(n_dims)){
if (dims_to_unsqueeze[i]) {
res = res.unsqueeze(i);
}
}
return res;
}
Tensor sum_backward(const Tensor & grad, IntArrayRef sizes, IntArrayRef dims, bool keepdim) {
if (!keepdim && sizes.size() > 0) {
if (dims.size()==1) {
return grad.unsqueeze(dims[0]).expand(sizes);
} else {
Tensor res = unsqueeze_multiple(grad, dims, sizes.size());
return res.expand(sizes);
}
} else {
return grad.expand(sizes);
}
}
Tensor nansum_backward(const Tensor & grad, const Tensor & self, IntArrayRef dims, bool keepdim) {
auto sizes = self.sizes();
if (!keepdim && sizes.size() > 0) {
if (dims.size()==1) {
return grad.unsqueeze(dims[0]).expand(sizes) * self.isnan().logical_not();
} else {
Tensor res = unsqueeze_multiple(grad, dims, sizes.size());
return res.expand(sizes) * self.isnan().logical_not();
}
} else {
return grad.expand(sizes) * self.isnan().logical_not();
}
}
std::vector<int64_t> reverse_list(const IntArrayRef list) {
auto result = std::vector<int64_t>();
result.reserve(list.size());
for (auto iter = list.rbegin(); iter != list.rend(); iter++) {
result.push_back(*iter);
}
return result;
}
Tensor reverse_dim(const Tensor& t, int64_t dim) {
Tensor index = at::arange(t.size(dim) - 1, -1, -1, t.options().dtype(at::kLong));
return t.index_select(dim, index);
}
Tensor prod_safe_zeros_backward(const Tensor &grad, const Tensor& inp, int64_t dim) {
if (inp.size(dim) == 1) {
return grad;
}
auto ones_size = inp.sizes().vec();
ones_size[dim] = 1;
Tensor ones = at::ones(ones_size, grad.options());
Tensor exclusive_normal_nocp = at::cat({ones, inp.narrow(dim, 0, inp.size(dim) - 1)}, dim);
Tensor exclusive_normal = exclusive_normal_nocp.cumprod(dim);
Tensor narrow_reverse = reverse_dim(inp.narrow(dim, 1, inp.size(dim) - 1), dim);
Tensor exclusive_reverse_nocp = at::cat({ones, narrow_reverse}, dim);
Tensor exclusive_reverse = reverse_dim(exclusive_reverse_nocp.cumprod(dim), dim);
return grad * (exclusive_normal * exclusive_reverse).conj();
}
// note that the gradient for prod is equivalent to:
// cumprod(exclusive, normal) * cumprod(exclusive, reverse), e.g.:
// input: [ a, b, c]
// cumprod(exclusive, normal): [1 , a, a * b]
// cumprod(exclusive, reverse): [b * c, c, 1]
// product: [b * c, a * c, a * b]
// and this is safe under input with 0s.
Tensor prod_backward(const Tensor& grad, const Tensor& input, const Tensor& result) {
if (input.dim() == 0) {
return grad;
}
Tensor zero_idx = (input == 0).nonzero();
if (zero_idx.numel() == 0) {
return grad * (result / input).conj();
} else if (zero_idx.size(0) > 1) {
return at::zeros_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
} else {
return prod_safe_zeros_backward(grad, input.contiguous().view(-1), 0).view_as(input);
}
}
Tensor prod_backward(Tensor grad, const Tensor& input, Tensor result, int64_t dim, bool keepdim) {
if (input.dim() == 0) {
return grad;
}
dim = at::maybe_wrap_dim(dim, input.sizes().size());
if (!keepdim && input.dim() != 1) {
grad = grad.unsqueeze(dim);
result = result.unsqueeze(dim);
}
Tensor zero_mask = (input == 0);
Tensor slice_zero_count = zero_mask.sum(dim, true);
int64_t total_zeros = slice_zero_count.sum().item<int64_t>();
if (total_zeros == 0) {
return grad * (result / input).conj();
} else {
return prod_safe_zeros_backward(grad, input, dim);
}
}
template <typename solve_f>
static Tensor generic_solve_jvp(
solve_f solve,
const Tensor& X, const Tensor& A,
const Tensor& dA, const Tensor& dB) {
auto is_vector_case = at::native::linalg_solve_is_vector_rhs(dA, dB);
auto dA_contrib = is_vector_case ? dA.matmul(X.unsqueeze(-1)).squeeze(-1) : dA.matmul(X);
// In general,
// dX = solve(A, dB - dA_contrib), but this behavior is different for lu_solve.
// For refer to lu_solve_jvp for more details on this.
return solve(A, dB, dA_contrib);
}
Tensor solve_jvp(
const Tensor& X,
const Tensor& A,
const Tensor& dA,
const Tensor& dB
) {
return generic_solve_jvp(
[](const Tensor& A, const Tensor& dB, const Tensor& dA_contrib) {
return at::linalg_solve(A, dB - dA_contrib);
},
X, A, dA, dB
);
}
Tensor solve_backward_self(const Tensor & grad, const Tensor & self, const Tensor & A) {
return at::linalg_solve(A.mH(), grad);
}
Tensor solve_backward_A(const Tensor & grad, const Tensor & self, const Tensor & A, const Tensor & solution) {
at::NoTF32Guard disable_tf32;
Tensor grad_self = solve_backward_self(grad, self, A);
if (self.ndimension() == 2 && A.ndimension() == 2) {
return -at::mm(grad_self, solution.mH());
}
// if self was unsqueezed from (..., M) to (..., M, 1)
bool vector_case = at::native::linalg_solve_is_vector_rhs(A, self);
if (vector_case) {
return -at::matmul(grad_self.unsqueeze(-1), solution.unsqueeze(-1).mH());
}
return -at::matmul(grad_self, solution.mH());
}
Tensor cumsum_backward(const Tensor & grad, int64_t dim) {
// Trivial case
if (grad.numel() <= 1 || grad.size(dim) == 1) {
return grad;
}
return grad.flip(dim).cumsum(dim).flip(dim);
}
Tensor logsumexp_backward(Tensor grad, const Tensor & self, Tensor result, IntArrayRef dim, bool keepdim) {
if (!keepdim && self.dim() != 0) {
grad = unsqueeze_multiple(grad, dim, self.sizes().size());
result = unsqueeze_multiple(result, dim, self.sizes().size());
}
return grad * (self - result).exp();
}
Tensor logcumsumexp_backward(Tensor grad, const Tensor & self, Tensor result, int64_t dim) {
if (grad.dim() == 0 || grad.numel() == 0) {
return grad;
}
// Reference: https://github.com/tensorflow/tensorflow/blob/
// 2a5910906a0e0f3dbc186ff9db6386d81a63448c/tensorflow/python/ops/math_grad.py#L1832-L1863
return AT_DISPATCH_FLOATING_TYPES(
at::typeMetaToScalarType(grad.dtype()),
"logcumsumexp_backward",
[grad, self, result, dim]() {
auto grad_min = at::empty_like(grad);
grad_min.fill_(std::numeric_limits<scalar_t>::lowest());
auto log_grad_positive = at::where(grad > 0, grad.log(), grad_min);
auto log_grad_negative = at::where(grad < 0, (-grad).log(), grad_min);
auto reverse_logcumsumexp = [dim](auto x) {
return at::flip(at::logcumsumexp(at::flip(x, {dim}), dim), {dim});
};
auto output_pos =
(reverse_logcumsumexp(log_grad_positive - result) + self).exp();
auto output_neg =
(reverse_logcumsumexp(log_grad_negative - result) + self).exp();
return output_pos - output_neg;
});
}
Tensor unbind_backward(const variable_list& grads, int64_t dim) {
IntArrayRef sizes;
at::TensorOptions o;
for (const auto& v : grads) {
if (v.defined()) {
sizes = v.sizes();
o = static_cast<Tensor>(v).options();
break;
}
}
auto grads_tensors = fmap(grads, [&](const Variable& v) {
return (
v.defined() ? static_cast<Tensor>(v) : at::zeros({}, o).expand(sizes));
});
return at::stack(grads_tensors, dim);
}
Tensor unsqueeze_to(const Tensor & self, IntArrayRef sizes) {
auto result = self;
int64_t nDims = sizes.size();
for(const auto dim : c10::irange(nDims)) {
if (sizes[dim] == 1) {
result = result.unsqueeze(dim);
}
}
return result;
}
Tensor unsqueeze_to(const Tensor & self, int64_t dim, IntArrayRef sizes) {
dim = at::maybe_wrap_dim(dim, sizes.size());
// in NumPy it's not an error to unsqueeze a scalar, but we still need to avoided
// unsqueezing in the backward.
if (sizes.size() > 0 && sizes[dim] == 1) {
return self.unsqueeze(dim);
}
return self;
}
std::vector<Tensor> cat_tensors_backward(const Tensor & grad, const std::vector<std::vector<int64_t>> &sizes, const std::vector<ScalarType> &dtypes, int64_t dim) {
std::vector<Tensor> grad_inputs(sizes.size());
if (!grad.defined()) {
return grad_inputs;
}
dim = at::legacy_cat_wrap_dim(dim, sizes);
int64_t accumulate = 0;
Tensor grad_;
bool grad_is_complex = grad.is_complex();
if (grad_is_complex) {
grad_ = at::real(grad);
}
for (const auto i : c10::irange(sizes.size())) {
Tensor grad_val;
if (!at::isComplexType(dtypes[i]) && grad_is_complex) {
// R -> C
grad_val = grad_;
} else {
grad_val = grad;
}
auto& shape = sizes[i];
// If input was empty tensor, gradInput should be empty tensor.
if (shape == std::vector<int64_t>({0})) {
grad_inputs[i] = at::zeros({0}, grad_val.options());
continue;
}
auto size = shape[dim];
accumulate += size;
grad_inputs[i] = grad_val.narrow(dim, accumulate - size, size);
}
return grad_inputs;
}
Tensor clamp_backward(const Tensor & grad, const Tensor &self, const optional<Scalar> & min, const optional<Scalar> & max) {
// clamp: gradients not defined on min and max, so we return the subgradient 1 for these cases.
if (max && min) {
auto zero = at::scalar_tensor(0., grad.options());
return where((self >= *min).logical_and_(self <= *max), grad, zero);
} else if (min) {
auto zero = at::scalar_tensor(0., grad.options());
return where(self >= *min, grad, zero);
} else if (max) {
auto zero = at::scalar_tensor(0., grad.options());
return where(self <= *max, grad, zero);
} else {
return grad;
}
}
Tensor clamp_backward(const Tensor & grad, const Tensor &self, const Tensor& min, const Tensor& max) {
// clamp: gradients not defined on min and max, so we return the subgradient 1 for these cases.
if (max.defined() && min.defined()) {
auto zero = at::scalar_tensor(0., grad.options());
const auto self_ge_min = self >= min;
const auto self_le_max = self <= max;
const auto& pred = areAnyTensorSubclassLike({self, min, max}) ?
self_ge_min.logical_and(self_le_max) :
self_ge_min.logical_and_(self_le_max);
return where(pred, grad, zero);
} else if (min.defined()) {
auto zero = at::scalar_tensor(0., grad.options());
return where(self >= min, grad, zero);
} else if (max.defined()) {
auto zero = at::scalar_tensor(0., grad.options());
return where(self <= max, grad, zero);
} else {
return grad;
}
}
std::tuple<at::Tensor, at::Tensor> clamp_backward_min_max(
const Tensor& grad, const Tensor& self, const Tensor& min, const Tensor& max,
const std::array<bool, 2>& grad_input_mask) {
// If min > max, min has no gradient
std::tuple<at::Tensor, at::Tensor> ret;
if (!grad.defined()) {
return ret;
}
auto zero = at::scalar_tensor(0., grad.options());
if (max.defined() && min.defined()) {
if (grad_input_mask[0]) {
const auto self_lt_min = self < min;
const auto min_lt_max = min < max;
const auto& pred = areAnyTensorSubclassLike({self, min, max}) ?
self_lt_min.logical_and(min_lt_max) :
self_lt_min.logical_and_(min_lt_max);
std::get<0>(ret) = where(pred, grad, zero);
}
if (grad_input_mask[1]) {
const auto self_gt_max = self > max;
const auto max_lt_min = max < min;
const auto& pred = areAnyTensorSubclassLike({self, min, max}) ?
self_gt_max.logical_or(max_lt_min) :
self_gt_max.logical_or_(max_lt_min);
std::get<1>(ret) = where(pred, grad, zero);
}
} else if (min.defined() && grad_input_mask[0]) {
std::get<0>(ret) = where(self < min, grad, zero);
} else if (max.defined() && grad_input_mask[1]) {
std::get<1>(ret) = where(self > max, grad, zero);
}
return ret;
}
at::Tensor clamp_jvp(
const Tensor& self_p, const Tensor& self_t,
const Tensor& min_p, const Tensor& min_t,
const Tensor& max_p, const Tensor& max_t
) {
if (min_p.defined() && max_p.defined()) {
return where(min_p > max_p, max_t, where(self_p < min_p, min_t, where(self_p > max_p, max_t, self_t)));
} else if (min_p.defined()) {
return where(self_p > min_p, self_t, min_t);
} else if (max_p.defined()) {
return where(self_p < max_p, self_t, max_t);
} else {
return self_t;
}
}
Tensor convolution_jvp(
const Tensor& input_p, const Tensor& input_t,
const Tensor& weight_p, const Tensor& weight_t,
const Tensor& bias_p, const Tensor& bias_t,
IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation,
bool transposed, IntArrayRef output_padding, int64_t groups) {
auto bias_t_opt = bias_t.defined() ? c10::optional<at::Tensor>(bias_t) : c10::nullopt;
return (
at::convolution(input_t, weight_p, c10::nullopt, stride, padding, dilation, transposed, output_padding, groups)
+ at::convolution(input_p, weight_t, bias_t_opt, stride, padding, dilation, transposed, output_padding, groups));
}
Tensor _convolution_jvp(
const Tensor& input_p, const Tensor& input_t,
const Tensor& weight_p, const Tensor& weight_t,
const Tensor& bias_p, const Tensor& bias_t,
IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation,
bool transposed, IntArrayRef output_padding, int64_t groups,
bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) {
auto bias_t_opt = bias_t.defined() ? c10::optional<at::Tensor>(bias_t) : c10::nullopt;
return (
at::_convolution(
input_t, weight_p, c10::nullopt, stride, padding, dilation, transposed, output_padding,
groups, benchmark, deterministic, cudnn_enabled, allow_tf32)
+ at::_convolution(
input_p, weight_t, bias_t_opt, stride, padding, dilation, transposed, output_padding,
groups, benchmark, deterministic, cudnn_enabled, allow_tf32));
}
Tensor convolution_backward_jvp_grad_bias(
const Tensor& grad_out_t,
const Tensor& grad_bias) {
if (!grad_bias.defined()) {
return Tensor();
}
int64_t dim = grad_out_t.dim() - 2;
if (dim == 1) {
// Cannot pass initializer list due to overload ambiguity
auto dimlist = std::vector<int64_t>{0, 2};
return grad_out_t.sum(dimlist);
} else if (dim == 2) {
return grad_out_t.sum({0, 2, 3});
} else if (dim == 3) {
return grad_out_t.sum({0, 2, 3, 4});
} else {
TORCH_INTERNAL_ASSERT(
false,
"convolution_backward_jvp_grad_bias expected dim of grad_out_t to be 3, 4, or 4, but got: ",
grad_out_t.dim());
}
}
// This function is used by load_derivatives.py to replace tensor.strides()
// calls that appear in derivative formulas. If the tensor has requires_grad
// set, this function returns its strides or throws an error if the tensor
// is sparse. If requires_grad is not set, an empty array is returned since
// there will be no backward pass. There has one special case, if input is MKLDNN
// tensor and has requires_grad set, just return an empty array, the reason is
// that MKLDNN tensor is a opaque tensor which has not stride info.
//
// This function only supports the case where `input` is the tensor whose
// single derivative is being calculated.
//
// This function does not support `self` derivatives for inplace functions.
//
// Args:
// input Tensor to call .strides() on
// input_name Name of `input` tensor, from derivative formula
at::IntArrayRef strides_or_error(const Tensor & input, c10::string_view const & input_name) {
// TODO: Ideally, this function would never be called if requires_grad is
// not set. Once codegen is updated to avoid the call, we can remove this
// check.
if (input.requires_grad()) {
TORCH_CHECK(
!input.is_sparse(),
"The backward pass for this operation requires the '", input_name,
"' tensor to be strided, but a sparse tensor was given instead. ",
"Please either use a strided tensor or set requires_grad=False for '",
input_name, "'");
if (input.is_mkldnn()) return IntArrayRef({});
return input.strides();
} else {
return IntArrayRef({});
}
}
Tensor mm_mat1_backward(const Tensor & grad, const Tensor & mat2, at::IntArrayRef mat1_sizes, at::IntArrayRef mat1_strides, const Scalar & alpha) {
// if input was column-major, return grad as column-order for efficiency
if (mat1_strides[0] == 1 && mat1_strides[1] == mat1_sizes[0]) {
return maybe_multiply(mat2.conj().mm(grad.t()).t(), alpha.conj());
} else {
return maybe_multiply(grad.mm(mat2.t().conj()), alpha.conj());
}
}
Tensor mm_mat2_backward(const Tensor & grad, const Tensor & mat1, IntArrayRef sizes, IntArrayRef strides, const Scalar & alpha) {
// if input was column-major, return grad as column-order for efficiency
if (strides[0] == 1 && strides[1] == sizes[0]) {
if (mat1.is_sparse()) {
// Since mm(dense, sparse) doesn't exist,
// pass a transposed output matrix to the underlying "addmm"
// function directly.
int64_t out_rows = mat1.size(1);
int64_t out_cols = grad.size(1);
Tensor t = at::zeros({}, grad.options()).expand({out_rows, out_cols}, true);
Tensor r = at::empty({out_cols, out_rows}, grad.options()).t();
at::addmm_out(r, t, mat1.t(), grad, alpha, 1);
return r;
}
return maybe_multiply(grad.t().mm(mat1.conj()).t(), alpha.conj());
} else {
return maybe_multiply(mat1.t().conj().mm(grad), alpha.conj());
}
}
Tensor _sparse_addmm_sparse_backward(const Tensor& grad, const Tensor& sparse_, const Tensor& dense, const Scalar& alpha) {
AT_ASSERT(sparse_.is_sparse());
auto sparse = sparse_.coalesce();
Tensor grad_sparse = maybe_multiply(grad.mm(dense.conj().t()), alpha);
return grad_sparse.sparse_mask(sparse);
}
// This function return a new SparseTensor with values from Tensor `input` filtered by indices of `mask`
// and values are ignored. `input` and `mask` are sparse matrices, a sparse tensor with sparse_dim=2 and dense_dim=2,
// and they must have the same shape.
// Note that the `output` must have the same `indices` as the `mask` so we are using just a clone.
// However, to get `values` we have to use specific helper function for CPU/CUDA and use the `mask` data to filter `values`
// That's why we created this `_sparse_mask_helper` function.
Tensor _sparse_matrix_mask(const Tensor& input, const Tensor& mask){
Tensor output = at::empty_like(mask);
Tensor mask_indices = mask._indices().clone();
Tensor r_values;
if (mask._nnz() == 0) {
r_values = at::zeros_like(mask._values());
} else {
r_values = _sparse_mask_helper(input, mask_indices.contiguous());
}
at::sparse::get_sparse_impl(output)->set_indices_and_values_unsafe(mask_indices, r_values);
return output;
}
Tensor sparse_sparse_matmul_backward(
const Tensor& grad,
const Tensor& a,
const Tensor& b,
int64_t grad_order) {
/*
To implement the backward algorithm for sparse matrix-matrix matmul (SPMM) we can start from the following definition
for dense tensors:
c = a @ b
then
a_grad = c_grad @ b^H
b_grad = a^H @ c_grad
So for sparse matrices we can use the following definition:
if grad_order == 0:
a_grad = sparse_matrix_mask(c_grad @ b^H, mask=a)
else:
b_grad = sparse_matrix_mask(a^H @ c_grad, mask=b)
*/
TORCH_CHECK(
grad_order == 0 || grad_order == 1,
": grad_order not in [0, 1] at sparse_sparse_matmul_backward function");
if (grad_order == 0) {
auto a_grad = _sparse_sparse_matmul(grad, b.conj().t());
return _sparse_matrix_mask(a_grad.coalesce(), a.coalesce());
}
auto b_grad = _sparse_sparse_matmul(a.conj().t(), grad);
return _sparse_matrix_mask(b_grad.coalesce(), b.coalesce());
}
Tensor renorm_backward(const Tensor & grad, const Tensor & self, const Scalar& p_s, int64_t dim, const Scalar& maxnorm) {
auto self_sizes = self.sizes();
dim = c10::maybe_wrap_dim(dim, self_sizes.size());
at::DimVector reduce_dims(self_sizes.size());
std::iota(reduce_dims.begin(), reduce_dims.end(), 0);
reduce_dims.erase(reduce_dims.begin() + dim);
auto dtype = self.scalar_type();
auto acc_type = at::toAccumulateType(dtype, /*is_cuda=*/true);
const auto p = p_s.toDouble();
Tensor norm;
if (acc_type != dtype) {
norm = at::linalg_vector_norm(
self, p, reduce_dims, /*keepdim=*/true, /*dtype=*/acc_type);
} else {
norm = at::linalg_vector_norm(
self, p, reduce_dims, /*keepdim=*/true);
}
const auto real_acc_type = c10::toRealValueType(acc_type);
auto grad_output = (self.conj() * grad);
// vector_norm output is real, so grad_output must also be real
if (real_acc_type != acc_type) {
grad_output = at::real(grad_output);
}
grad_output = grad_output.sum(
reduce_dims, /*keepdim=*/true, /*dtype=*/real_acc_type);
auto nb = linalg_vector_norm_backward(
grad_output, self, p, norm, reduce_dims, /*keepdim=*/true);
auto invnorm = (norm + 1e-7).reciprocal();
auto grad_norm = maxnorm * invnorm * (grad - invnorm * nb);
return at::where(norm > maxnorm, grad_norm.to(grad.scalar_type()), grad);
}
Tensor repeat_backward(Tensor grad, IntArrayRef repeats, IntArrayRef input_shape) {
auto find_iter = std::find(repeats.cbegin(), repeats.cend(), 0);
if (find_iter != repeats.cend()) {
return at::zeros(input_shape, grad.options());
}
const auto input_dims = input_shape.size();
int64_t num_unsqueezed = grad.dim() - input_dims;
for (const auto i : c10::irange(num_unsqueezed)) {
(void)i; // Suppress unused variable warning
grad = grad.sum(0, false);
}
at::DimVector grad_size, sum_dims;
for (const auto dim : c10::irange(input_dims)) {
int64_t repeat = repeats[dim + num_unsqueezed];
// Reshape gradient (repeat > 1)
// Index: [..., dim , ...] [..., dim , dim+1 , ...]
// Shape: From [..., dimsize, ...] to [..., repeat, dimsize/repeat, ...]
// The gradient tensor at 'dim' is reshaped to 'repeat' times of input tensor.
// Then, sum up gradients over repeated tensors along 'dim', and reduce shape
// from 'repeat * dimsize/repeat' to 'dimsize/repeat' ('input_dimsize').
// Example:
// Size(3, 2) Size(6, 2)
// [[v1_0, v1_1],
// [v1_2, v1_3],
// [[v0, v1], repeat(2, 1) [v1_4, v1_5],
// [v2, v3], -------------> [v2_0, v2_1],
// [v4, v5]] [v2_2, v2_3],
// [v2_4, v2_5]]
//
// input grad (3, 2) reshape (2, 3, 2) output grad (6, 2)
// [[[g1_0, g1_1], [[g1_0, g1_1],
// [g1_2, g1_3], [g1_2, g1_3],
// [[g1_0+g2_0, g1_1+g2_1], [g1_4, g1_5]], [g1_4, g1_5],
// [g1_0+g2_0, g1_1+g2_1], [g2_0, g2_1],
// [g1_0+g2_0, g1_1+g2_1]] [[g2_0, g2_1], [g2_2, g2_3],
// [g2_2, g2_3], [g2_4, g2_5]]
// [g2_4, g2_5]]]
// If gradient tensor is reshaped to [..., dimsize/repeat, repeat, ...] and then
// sum over 'dim+1'. The gradient for input is not correctly aligned with input.
// Example:
// input grad (3, 2) reshape (3, 2, 2) output grad (6, 2)
// [[[g1_0, g1_1],
// [g1_2, g1_3]], [[g1_0, g1_1],
// [g1_2, g1_3],
// [[g1_0+g1_2, g1_1+g1_3], [[g1_4, g1_5], [g1_4, g1_5],
// [g1_4+g2_0, g1_5+g2_1], [g2_0, g2_1]], [g2_0, g2_1],
// [g2_2+g2_4, g2_3+g2_5]] [g2_2, g2_3],
// [[g2_2, g2_3], [g2_4, g2_5]]
// [g2_4, g2_5]]]
if (repeat != 1) {
grad_size.push_back(repeat);
sum_dims.push_back(grad_size.size() - 1);
}
// Don't need to reshape gradient into (repeat, input_shape[dim]) (repeat == 1)
grad_size.push_back(input_shape[dim]);
}