diff --git a/src/main.py b/src/main.py index 243a31e..bac2711 100644 --- a/src/main.py +++ b/src/main.py @@ -1,48 +1,66 @@ -from PIL import Image import torch import torch.nn as nn import torch.optim as optim -from torchvision import datasets, transforms from torch.utils.data import DataLoader -import numpy as np - -# Step 1: Load MNIST Data and Preprocess -transform = transforms.Compose([ - transforms.ToTensor(), - transforms.Normalize((0.5,), (0.5,)) -]) +from torchvision import datasets, transforms -trainset = datasets.MNIST('.', download=True, train=True, transform=transform) -trainloader = DataLoader(trainset, batch_size=64, shuffle=True) -# Step 2: Define the PyTorch Model -class Net(nn.Module): +class MNISTTrainer: def __init__(self): - super().__init__() - self.fc1 = nn.Linear(28 * 28, 128) - self.fc2 = nn.Linear(128, 64) - self.fc3 = nn.Linear(64, 10) - - def forward(self, x): - x = x.view(-1, 28 * 28) - x = nn.functional.relu(self.fc1(x)) - x = nn.functional.relu(self.fc2(x)) - x = self.fc3(x) - return nn.functional.log_softmax(x, dim=1) - -# Step 3: Train the Model -model = Net() -optimizer = optim.SGD(model.parameters(), lr=0.01) -criterion = nn.NLLLoss() - -# Training loop -epochs = 3 -for epoch in range(epochs): - for images, labels in trainloader: - optimizer.zero_grad() - output = model(images) - loss = criterion(output, labels) - loss.backward() - optimizer.step() - -torch.save(model.state_dict(), "mnist_model.pth") \ No newline at end of file + self.transform = transforms.Compose( + [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))] + ) + self.optimizer = None + self.criterion = nn.NLLLoss() + self.epochs = 3 + + def load_data(self): + """Load and preprocess MNIST data.""" + trainset = datasets.MNIST( + ".", download=True, train=True, transform=self.transform + ) + trainloader = DataLoader(trainset, batch_size=64, shuffle=True) + return trainloader + + def define_model(self): + """Define the PyTorch Model.""" + + class Net(nn.Module): + def __init__(self): + super().__init__() + self.fc1 = nn.Linear(28 * 28, 128) + self.fc2 = nn.Linear(128, 64) + self.fc3 = nn.Linear(64, 10) + + def forward(self, x): + x = x.view(-1, 28 * 28) + x = nn.functional.relu(self.fc1(x)) + x = nn.functional.relu(self.fc2(x)) + x = self.fc3(x) + return nn.functional.log_softmax(x, dim=1) + + model = Net() + self.optimizer = optim.SGD(model.parameters(), lr=0.01) + return model + + def train_model(self, model, trainloader): + """Train the model.""" + for epoch in range(self.epochs): + for images, labels in trainloader: + self.optimizer.zero_grad() + output = model(images) + loss = self.criterion(output, labels) + loss.backward() + self.optimizer.step() + + def save_model(self, model): + """Save the trained model.""" + torch.save(model.state_dict(), "mnist_model.pth") + + +# Create an instance of MNISTTrainer and call the methods in the correct order +trainer = MNISTTrainer() +trainloader = trainer.load_data() +model = trainer.define_model() +trainer.train_model(model, trainloader) +trainer.save_model(model)