-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretrieval.py
372 lines (306 loc) · 11.8 KB
/
retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import time
from pathlib import Path
from typing import Dict, List, Union
from omegaconf import DictConfig
import faiss
from faiss.swigfaiss import IndexIDMap
from hydra import compose, initialize
from langchain.text_splitter import RecursiveCharacterTextSplitter
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Document, VectorStoreIndex
from llama_index.core.node_parser import (
LangchainNodeParser,
SentenceSplitter,
SentenceWindowNodeParser,
SemanticSplitterNodeParser,
TokenTextSplitter
)
import numpy as np
from ragatouille import RAGPretrainedModel
from sentence_transformers import CrossEncoder
import torch
from transformers import AutoTokenizer
import torchmetrics
from tqdm import tqdm
from preprocess import factory
from utils import (
get_logger,
save_query_embeddings,
load_query_embeddings,
check_if_query_embeddings_exist,
)
def run_retrieval_evaluation(config: DictConfig) -> List[Dict[str, float]]:
cr = config.retrieval
logger = get_logger()
df = factory(config).load_dataset(config)
contexts, question_batches = df.context.tolist(), df.questions.tolist()
# question - doc_id, for retrieval labels
labels = np.array(
[idx for idx, qb in enumerate(question_batches) for q in qb]
)
questions = [q for qb in question_batches for q in qb]
logger.info(f'{len(questions):,} questions')
vs_index = create_vector_store_index(cr, contexts)
embed_model = vs_index._embed_model
embedding_dict = vs_index.vector_store.to_dict()
embeddings = np.array(list(embedding_dict['embedding_dict'].values()))
node_ids = list(embedding_dict['embedding_dict'].keys())
node_id_doc_id_map = {
k: int(v) for k, v in embedding_dict['text_id_to_ref_doc_id'].items()
}
vec_node_id_doc_id_mapper = np.vectorize(
lambda x: node_id_doc_id_map[node_ids[x]]
)
faiss_index = create_faiss_index(embeddings, node_ids)
logger.info(f'Computing {len(questions):,} query embeddings...')
if (
check_if_query_embeddings_exist(config)
and not config.preprocess.n_contexts
):
logger.info('Loading pre-computed query embeddings...')
query_embeddings = load_query_embeddings(config, questions)
else:
query_embeddings = embed_model.get_text_embedding_batch(
questions, show_progress=True
)
query_embeddings = np.array(query_embeddings)
if not config.preprocess.n_contexts:
logger.info('Saving query embeddings...')
save_query_embeddings(config, query_embeddings)
del embed_model
results = []
top_ks = cr.evaluation.top_ks
max_top_k = max(top_ks)
# only need to query once with the max of top_ks
_, retrieved_ids = faiss_index.search(query_embeddings, k=max_top_k)
if cr.reranking and max_top_k > 1:
# similarity scores should be computed once with max top_k
similarity_scores = compute_similarity_scores_for_reranking(
cr, vs_index, retrieved_ids, questions
)
logger.info('Starting evaluation...')
start = time.time()
for tk in tqdm(top_ks):
top_k_retrieved_ids = retrieved_ids[:, :tk].copy()
top_k_similarity_scores = similarity_scores[:, :tk].copy()
sorted_indices = np.argsort(top_k_similarity_scores, axis=1)[:, ::-1]
# rerank retrieved ids based on the similarity scores
top_k_retrieved_ids = np.take_along_axis(
top_k_retrieved_ids, sorted_indices, axis=1
)
top_k_retrieved_ids = vec_node_id_doc_id_mapper(
top_k_retrieved_ids
)
res_top_k = evaluate_retrieved_results(
top_k_retrieved_ids, labels, tk
)
results.append(res_top_k)
else:
logger.info('Starting evaluation...')
start = time.time()
for tk in tqdm(top_ks):
top_k_retrieved_ids = retrieved_ids[:, :tk].copy()
top_k_retrieved_ids = vec_node_id_doc_id_mapper(
top_k_retrieved_ids
)
res_top_k = evaluate_retrieved_results(top_k_retrieved_ids, labels, tk)
results.append(res_top_k)
logger.info(f'Evaluation took {(time.time() - start) / 60:.2f} minutes...')
return results
def get_document_chunker(
config: DictConfig,
embed_model: HuggingFaceEmbedding
) -> Union[
SentenceSplitter,
SemanticSplitterNodeParser,
TokenTextSplitter,
RecursiveCharacterTextSplitter
]:
""""""
conf_chunker = config.chunker
chunker_name = conf_chunker.name
if chunker_name in [
SentenceSplitter.__name__, SentenceWindowNodeParser.__name__
]:
chunker = globals()[chunker_name](**conf_chunker.params)
elif chunker_name == SemanticSplitterNodeParser.__name__:
chunker = SemanticSplitterNodeParser(
embed_model=embed_model, **conf_chunker.params
)
elif chunker_name == TokenTextSplitter.__name__:
tokenizer = AutoTokenizer.from_pretrained(embed_model.model_name)
chunker = TokenTextSplitter(tokenizer=tokenizer, **conf_chunker.params)
elif chunker_name == RecursiveCharacterTextSplitter.__name__:
chunker = LangchainNodeParser(RecursiveCharacterTextSplitter(
**conf_chunker.params
))
else:
raise ValueError(f'Unrecognized chunker: {chunker_name}')
return chunker
def create_vector_store_index(
config: DictConfig,
contexts: List[str]
) -> VectorStoreIndex:
logger = get_logger()
embed_model = HuggingFaceEmbedding(**config.model)
documents = [
Document(
text=text, doc_id=idx, metadata={"context_id": idx},
excluded_embed_metadata_keys=["context_id"]
) for idx, text in enumerate(contexts)
]
chunker = get_document_chunker(config, embed_model)
if any([
isinstance(chunker, x) for x in [
SentenceSplitter, TokenTextSplitter,
LangchainNodeParser, SentenceWindowNodeParser]
]):
logger.info(f'Embedding {len(contexts):,} contexts...')
index = VectorStoreIndex.from_documents(
documents,
transformations=[chunker],
embed_model=embed_model,
show_progress=True
)
elif isinstance(chunker, SemanticSplitterNodeParser):
logger.info(f'Building nodes with {SemanticSplitterNodeParser.__name__}')
nodes = chunker.build_semantic_nodes_from_documents(
documents, show_progress=False
)
# nodes needs to be filtered as sometimes SemanticSplitterNodeParser
# produces nodes with empty text...
nodes = list(filter(lambda x: x.text, nodes))
logger.info(f'Embedding {len(contexts):,} contexts...')
index = VectorStoreIndex(
nodes=nodes,
embed_model=embed_model,
show_progress=True
)
else:
raise ValueError(f'Unrecognized chunker: {chunker}')
return index
def create_faiss_index(
embeddings: np.ndarray,
node_ids: List[str]
) -> IndexIDMap:
# https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
embedding_dimension = embeddings.shape[1]
index = faiss.IndexIDMap(faiss.IndexFlatIP(embedding_dimension))
index.add_with_ids(embeddings, np.arange(len(node_ids)))
return index
def compute_similarity_scores_for_reranking(
config_retrieval: DictConfig,
index: VectorStoreIndex,
retrieved_ids: np.ndarray,
questions: List[str]
) -> np.ndarray:
""""""
logger = get_logger()
# workers are not released in a multiprocessing context
reranker_name = config_retrieval.reranker.model_name
model = CrossEncoder(reranker_name, max_length=512)
logger.info(f'Reranking Retrieval results with {reranker_name}...')
nodes = list(index.docstore.docs.values())
vectorized_mapper = np.vectorize(lambda x: nodes[x].text)
retrieved_chunks = vectorized_mapper(retrieved_ids)
retrieved_chunks_to_rerank = [
[qu, chunk] for idx, qu in enumerate(questions)
for chunk in retrieved_chunks[idx]
]
scores = model.predict(
retrieved_chunks_to_rerank, **config_retrieval.reranker.predict
)
scores = scores.reshape((len(questions), -1))
return scores
def run_colbert_retrieval_evaluation(
config: DictConfig
) -> List[Dict[str, float]]:
ccr = config.colbert_retrieval
logger = get_logger()
index_root = Path().resolve().joinpath(config.colbert_index)
question_batch_size = ccr.question_batch_size
top_ks = ccr.evaluation.top_ks
df = factory(config).load_dataset(config)
contexts, question_batches = df.context.tolist(), df.questions.tolist()
# question - doc_id, for retrieval labels
labels = np.array(
[idx for idx, qb in enumerate(question_batches) for q in qb]
)
questions = [q for qb in question_batches for q in qb]
rag = RAGPretrainedModel.from_pretrained(
ccr.model_name,
index_root=str(index_root),
verbose=1
)
start = time.time()
rag.index(
collection=contexts,
document_ids=[str(i) for i in range(len(contexts))],
max_document_length=ccr.max_document_length,
split_documents=True
)
logger.info(
f'Indexing took {(time.time() - start) / 60:.2f} minutes.\n'
f'Starting retrieval search...'
)
retrieved_ids = []
max_top_k = max(top_ks)
for idx in tqdm(list(range(0, len(questions), question_batch_size))):
question_batch = questions[idx: idx + question_batch_size]
retrievals = rag.search(query=question_batch, k=max_top_k)
retrieved_ids_batch = np.array([
int(x['document_id']) for sub_list in retrievals for x in sub_list
]).reshape((-1, max_top_k))
retrieved_ids.append(retrieved_ids_batch)
retrieved_ids = np.concatenate(retrieved_ids, axis=0)
results = []
logger.info('Starting evaluation...')
for tk in tqdm(top_ks):
top_k_retrieved_ids = retrieved_ids[:, :tk].copy()
res_top_k = evaluate_retrieved_results(top_k_retrieved_ids, labels, tk)
results.append(res_top_k)
return results
def evaluate_retrieved_results(
retrieved_ids: np.ndarray,
labels: np.ndarray,
top_k: int
) -> Dict[str, float]:
logger = get_logger()
logger.info('Computing metrics...')
targets = (
np.expand_dims(labels, axis=1) == retrieved_ids
)
targets = torch.tensor(np.array(targets), dtype=torch.float16)
targets = torch.clamp(targets, min=0, max=1)
preds = torch.tensor(
np.geomspace(1, 0.1, top_k), dtype=torch.float32
)
preds /= torch.sum(preds)
preds = preds.repeat((targets.shape[0], 1))
indexes = torch.arange(targets.shape[0]).view(
-1, 1) * torch.ones(1, targets.shape[1]).long()
metrics = [
torchmetrics.retrieval.RetrievalMRR(),
torchmetrics.retrieval.RetrievalNormalizedDCG(),
torchmetrics.retrieval.RetrievalPrecision(),
torchmetrics.retrieval.RetrievalRecall(),
torchmetrics.retrieval.RetrievalHitRate(),
torchmetrics.retrieval.RetrievalMAP()
]
results = {}
for metr in metrics:
score = round(metr(preds, targets, indexes).item(), 4)
metr_name = metr.__class__.__name__.replace('Retrieval', '')
results[metr_name] = score
logger.info(f'Top-{top_k}: {metr_name}: {score}')
return results
if __name__ == '__main__':
initialize(config_path='configs', version_base='1.1')
config = compose(config_name='config')
results = run_retrieval_evaluation(config)
for top_k, res in zip(config.retrieval.evaluation.top_ks, results):
print(f'{top_k}: {res}')
# results = run_colbert_retrieval_evaluation(config)
#
# for top_k, res in zip(config.retrieval.evaluation.top_ks, results):
# print(f'{top_k}: {res}')