-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
207 lines (159 loc) · 6.1 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from abc import abstractmethod
from pathlib import Path
from typing import Union
from datasets import load_dataset
from hydra import compose, initialize
from omegaconf import DictConfig
import pandas as pd
from tqdm import tqdm
from utils import get_logger
class Dataset:
columns = ['context', 'questions', 'answers']
@staticmethod
@abstractmethod
def load_dataset(config: DictConfig) -> pd.DataFrame:
pass
class QUAC(Dataset):
# https://quac.ai/
# https://huggingface.co/datasets/quac?library=true
@staticmethod
def load_dataset(config: DictConfig) -> pd.DataFrame:
logger = get_logger()
dataset_name = 'quac'
path_cache_dir = Path().resolve().joinpath(
config.datasets, dataset_name
)
logger.info(f'Loading dataset: {dataset_name}')
dataset = load_dataset(dataset_name, cache_dir=str(path_cache_dir))
df_train = pd.DataFrame(dataset['train'])
df_valid = pd.DataFrame(dataset['validation'])
if config.preprocess.concat_train_validation:
logger.info('Concatenating train and validation sets...')
df = pd.concat(
[df_train, df_valid], axis=0
).reset_index(drop=True)
else:
df = df_train.copy()
curated_samples = []
samples = df[['context', 'questions', 'answers']].to_dict('records')
for sample in tqdm(samples):
curated_samples.append({
'context': sample['context'],
'questions': sample['questions'],
'answers': [answer[0] for answer in sample['answers']['texts']]
})
df = pd.DataFrame(curated_samples)
# There are separate and therefore duplicated contexts with different
# questions and answers - aggregate them
df = df.groupby('context').agg({
'questions': lambda x: [item for sublist in x for item in sublist],
'answers': lambda x: [item for sublist in x for item in sublist]
}).reset_index()
# Remove corresponding questions and answers where the answer is
# 'CANNOTANSWER'
questions = [
[qu for qu, ans in zip(questions, answers)
if ans != 'CANNOTANSWER'] for questions, answers in
zip(df['questions'], df['answers'])
]
answers = [
[ans for ans in answers if ans != 'CANNOTANSWER']
for answers in df['answers']
]
df['questions'], df['answers'] = questions, answers
df = df.loc[:, QUAC.columns]
n_contexts = config.preprocess.n_contexts
if n_contexts:
df = df.iloc[:n_contexts]
return df
class SQUAD(Dataset):
# https://rajpurkar.github.io/SQuAD-explorer/
# https://huggingface.co/datasets/squad?row=0
@staticmethod
def load_dataset(config: DictConfig) -> pd.DataFrame:
logger = get_logger()
dataset_name = 'squad'
path_cache_dir = Path().resolve().joinpath(
config.datasets, dataset_name
)
logger.info(f'Loading dataset: {dataset_name}')
dataset = load_dataset(dataset_name, cache_dir=str(path_cache_dir))
df_train = pd.DataFrame(dataset['train'])
df_valid = pd.DataFrame(dataset['validation'])
if config.preprocess.concat_train_validation:
logger.info('Concatenating train and validation sets...')
df = pd.concat(
[df_train, df_valid], axis=0
).reset_index(drop=True)
else:
df = df_train.copy()
df = df.loc[:, ['context', 'question', 'answers']].copy()
# although it is called answers, there is always one element only
df['answers'] = df.answers.apply(lambda x: x['text'][0])
df.rename(
columns={'question': 'questions', 'answer': 'answers'},
inplace=True
)
df = df.loc[:, SQUAD.columns]
df = df.groupby('context').agg(
{'questions': list, 'answers': list}
).reset_index()
n_contexts = config.preprocess.n_contexts
if n_contexts:
df = df.iloc[:n_contexts]
return df
class HotPotQA(Dataset):
# https://aclanthology.org/D18-1259.pdf
# https://huggingface.co/datasets/hotpot_qa?row=16
@staticmethod
def load_dataset(config: DictConfig) -> pd.DataFrame:
logger = get_logger()
dataset_name = 'hotpot_qa'
path_cache_dir = Path().resolve().joinpath(
config.datasets, dataset_name
)
logger.info(f'Loading dataset: {dataset_name}')
dataset = load_dataset(
dataset_name, 'fullwiki', cache_dir=str(path_cache_dir)
)
df_train = pd.DataFrame(dataset['train'])
df_valid = pd.DataFrame(dataset['validation'])
if config.preprocess.concat_train_validation:
logger.info('Concatenating train and validation sets...')
df = pd.concat(
[df_train, df_valid], axis=0
).reset_index(drop=True)
else:
df = df_train.copy()
df = df.loc[
df['context'].apply(lambda x: bool(x['sentences']))
].reset_index(drop=True)
df['context'] = df.context.apply(
lambda x: ["".join(sub_list) for sub_list in x['sentences']][0]
)
df.rename(
columns={'question': 'questions', 'answer': 'answers'},
inplace=True
)
df = df.loc[:, HotPotQA.columns]
df = df.groupby('context').agg(
{'questions': list, 'answers': list}
).reset_index()
n_contexts = config.preprocess.n_contexts
if n_contexts:
df = df.iloc[:n_contexts]
return df
def factory(
config: DictConfig
) -> Union[QUAC, SQUAD]:
return globals()[config.preprocess.dataset]
if __name__ == '__main__':
initialize(config_path='configs', version_base='1.1')
config = compose(config_name='config')
print(config)
df = QUAC.load_dataset(config)
print(df.head())
df = SQUAD.load_dataset(config)
print(df.head())
df = HotPotQA.load_dataset(config)
print(df.head())