-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathapp.py
128 lines (107 loc) · 4.13 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from dotenv import load_dotenv
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS #facebook AI similarity search
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub
import docx
import os
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_core.callbacks import StdOutCallbackHandler
from streamlit_chat import message
def main():
load_dotenv()
st.set_page_config(page_title="Ask your PDF")
st.header("Ask Your PDF")
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
if "processComplete" not in st.session_state:
st.session_state.processComplete = None
with st.sidebar:
uploaded_files = st.file_uploader("Upload your file",type=['pdf','docx'],accept_multiple_files=True)
process = st.button("Process")
# pdf = st.file_uploader("Upload your pdf",type="pdf")
if process:
files_text = get_files_text(uploaded_files)
# get text chunks
text_chunks = get_text_chunks(files_text)
# create vetore stores
vetorestore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(vetorestore) #for openAI
# st.session_state.conversation = get_conversation_chain(vetorestore) #for huggingface
st.session_state.processComplete = True
if st.session_state.processComplete == True:
user_question = st.chat_input("Ask Question about your files.")
if user_question:
handel_userinput(user_question)
def get_files_text(uploaded_files):
text = ""
for uploaded_file in uploaded_files:
split_tup = os.path.splitext(uploaded_file.name)
file_extension = split_tup[1]
if file_extension == ".pdf":
text += get_pdf_text(uploaded_file)
elif file_extension == ".docx":
text += get_docx_text(uploaded_file)
else:
text += get_csv_text(uploaded_file)
return text
def get_pdf_text(pdf):
pdf_reader = PdfReader(pdf)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_docx_text(file):
doc = docx.Document(file)
allText = []
for docpara in doc.paragraphs:
allText.append(docpara.text)
text = ' '.join(allText)
return text
def get_csv_text(file):
return "a"
def get_text_chunks(text):
# spilit ito chuncks
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=900,
chunk_overlap=100,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
embeddings = HuggingFaceEmbeddings()
knowledge_base = FAISS.from_texts(text_chunks,embeddings)
return knowledge_base
def get_conversation_chain(vetorestore):
handler = StdOutCallbackHandler()
llm = HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature":5,"max_length":64})
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vetorestore.as_retriever(),
memory=memory,
callbacks=[handler]
)
return conversation_chain
def handel_userinput(user_question):
response = st.session_state.conversation({'question':user_question})
st.session_state.chat_history = response['chat_history']
# Layout of input/response containers
response_container = st.container()
with response_container:
for i, messages in enumerate(st.session_state.chat_history):
if i % 2 == 0:
message(messages.content, is_user=True, key=str(i))
else:
message(messages.content, key=str(i))
if __name__ == '__main__':
main()