-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathch-8.R
154 lines (97 loc) · 3.15 KB
/
ch-8.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
library(tidyverse)
library(readxl)
star <- read_excel("datasets/star/star.xlsx")
head(star)
# Select given columns from star
select(star, tmathssk, treadssk, schidkn)
select(star, -tmathssk, -treadssk, -schidkn)
select(star, -c(tmathssk, treadssk, schidkn))
# Select all columns between tmathssk and totexpk;
# Re-assign results back to star
star <- select(star, tmathssk:totexpk)
head(star)
# Calculate total score
star <- mutate(star, new_column = tmathssk + treadssk)
head(star)
# Rename
star <- rename(star, ttl_score = new_column)
head(star)
# Sort
arrange(star, classk, treadssk)
arrange(star, desc(classk), treadssk)
# Filter
filter(star, classk == 'small.class')
filter(star, treadssk >= 500)
filter(star, classk == 'small.class' & treadssk >= 500)
# Group by
star_grouped <- group_by(star, classk)
head(star_grouped)
# Average math score by class size
summarize(star_grouped, avg_math = mean(tmathssk))
# Read in our data sets
star <- read_excel('datasets/star/star.xlsx')
head(star)
districts <- read_csv('datasets/star/districts.csv')
head(districts)
# Left outer join star on districts
left_join(select(star, schidkn, tmathssk, treadssk), districts)
star_grouped <- group_by(star, classk)
star_avg_reading <- summarize(star_grouped, avg_reading = mean(treadssk))
star_avg_reading_sorted <- arrange(star_avg_reading, desc(avg_reading))
star_avg_reading_sorted
# Piping %>%
# Get the average reading score
# by class type, sorted high to low
star %>%
group_by(classk) %>%
summarise(avg_reading = mean(treadssk)) %>%
arrange(desc(avg_reading))
# Average math and reading score
# for each school district
star %>%
group_by(schidkn) %>%
summarise(avg_read = mean(treadssk), avg_math = mean(tmathssk)) %>%
arrange(schidkn) %>%
head()
# Set up
star_pivot <- star %>%
select(c(schidkn, treadssk, tmathssk)) %>%
mutate(id = row_number())
star_long <- star_pivot %>%
pivot_longer(cols = c(tmathssk, treadssk),
values_to = 'score', names_to = 'test_type')
head(star_long)
# Rename tmathssk and treadssk as math and reading
star_long <- star_long %>%
mutate(test_type = recode(test_type,
'tmathssk' = 'math', 'treadssk' = 'reading'))
distinct(star_long, test_type)
star_wide <- star_long %>%
pivot_wider(values_from = 'score', names_from = 'test_type')
head(star_wide)
# Count plot
ggplot(data = star,
aes(x = classk))+
geom_bar()
# Histogram
ggplot(data = star,aes(x = treadssk))+
geom_histogram()
ggplot(data = star, aes(x = treadssk))+
geom_histogram(bins = 25, fill = 'blue')
# Boxplot
ggplot(data = star,aes(x = treadssk))+
geom_boxplot()
# "Flipped" boxplot
ggplot(data = star, aes(y = treadssk))+
geom_boxplot()
# Grouped boxplot
ggplot(data = star, aes(x = classk,y = treadssk))+
geom_boxplot()
# Scatterplot
ggplot(data=star,aes(x = tmathssk,y = treadssk))+
geom_point()
# Scatterplot with custom axis labels and title
ggplot(data = star, aes(x = tmathssk, y = treadssk))+
geom_point() +
xlab('Math score') + ylab('Reading score')+
ggtitle('Math score versus reading score')