-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGridImageSplitter.py
295 lines (235 loc) · 10.9 KB
/
GridImageSplitter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import torch
import numpy as np
import cv2
class GridImageSplitter:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"rows": ("INT", {"default": 2, "min": 1, "max": 10}),
"cols": ("INT", {"default": 3, "min": 1, "max": 10}),
"row_split_method": (["uniform", "edge_detection"],),
"col_split_method": (["uniform", "edge_detection"],),
},
}
RETURN_TYPES = ("IMAGE", "IMAGE")
FUNCTION = "split_image"
CATEGORY = "image/processing"
def remove_external_borders(self, img_np):
"""
处理外部边缘,加强对黑色边框的检测
"""
if img_np.size == 0 or img_np is None:
return img_np
# 转换为多个色彩空间
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
hsv = cv2.cvtColor(img_np, cv2.COLOR_RGB2HSV)
height, width = img_np.shape[:2]
# 最小裁剪量
min_trim = 18
# 检查范围扩大到30像素
check_width = 30
def is_black_region(region):
"""检查区域是否为黑色区域"""
if len(region.shape) == 3:
region_gray = cv2.cvtColor(region, cv2.COLOR_RGB2GRAY)
else:
region_gray = region
# 计算暗色像素的比例
dark_ratio = np.mean(region_gray < 40)
# 如果超过60%的像素是暗色的,认为是黑边
return dark_ratio > 0.6
def is_white_region(region):
"""检查区域是否为白色区域"""
if len(region.shape) == 3:
region_hsv = cv2.cvtColor(region, cv2.COLOR_RGB2HSV)
sat_mean = np.mean(region_hsv[:,:,1])
val_mean = np.mean(region_hsv[:,:,2])
return sat_mean < 30 and val_mean > 225
return False
def find_border(gray_img, is_vertical=True, from_start=True):
"""查找边界"""
if is_vertical:
total_size = width
chunk_size = 5 # 每次检查5个像素
else:
total_size = height
chunk_size = 5
if from_start:
range_iter = range(0, total_size-chunk_size, chunk_size)
else:
range_iter = range(total_size-chunk_size, 0, -chunk_size)
for i in range_iter:
if is_vertical:
chunk = img_np[:, i:i+chunk_size] if from_start else img_np[:, i-chunk_size:i]
else:
chunk = img_np[i:i+chunk_size, :] if from_start else img_np[i-chunk_size:i, :]
# 分别检查黑边和白边
if not (is_black_region(chunk) or is_white_region(chunk)):
return i if from_start else i
return min_trim if from_start else total_size - min_trim
# 检测左边界
left = find_border(gray, is_vertical=True, from_start=True)
# 检测右边界
right = find_border(gray, is_vertical=True, from_start=False)
# 检测上边界
top = find_border(gray, is_vertical=False, from_start=True)
# 检测下边界
bottom = find_border(gray, is_vertical=False, from_start=False)
# 强制应用最小裁剪
# 检查左侧边缘
left_region = gray[:, :check_width]
if np.mean(left_region < 40) > 0.3: # 如果有超过30%的暗色像素
left = max(left, min_trim)
# 检查右侧边缘
right_region = gray[:, -check_width:]
if np.mean(right_region < 40) > 0.3: # 如果有超过30%的暗色像素
right = min(right, width - min_trim)
# 检查上边缘
top_region = gray[:check_width, :]
if np.mean(top_region < 40) > 0.3:
top = max(top, min_trim)
# 检查下边缘
bottom_region = gray[-check_width:, :]
if np.mean(bottom_region < 40) > 0.3:
bottom = min(bottom, height - min_trim)
# 确保裁剪合理
if (right - left) < width * 0.5 or (bottom - top) < height * 0.5:
return img_np
# 应用裁剪
cropped = img_np[top:bottom, left:right]
# 进行二次检查,确保没有遗漏的黑边
if cropped.shape[1] > 2 * min_trim:
right_edge = cv2.cvtColor(cropped[:, -min_trim:], cv2.COLOR_RGB2GRAY)
if np.mean(right_edge < 40) > 0.3:
cropped = cropped[:, :-min_trim]
return cropped
def detect_split_borders(self, img_strip, is_vertical=True):
"""
检测分割线区域的边框
"""
hsv = cv2.cvtColor(img_strip, cv2.COLOR_RGB2HSV)
lab = cv2.cvtColor(img_strip, cv2.COLOR_RGB2LAB)
sat = hsv[:, :, 1]
val = hsv[:, :, 2]
l_channel = lab[:, :, 0]
# 检测白色和黑色区域
is_border = ((sat < 10) & (val > 248)) | (l_channel < 30)
if is_vertical:
border_ratios = np.mean(is_border, axis=1)
indices = np.where(border_ratios < 0.95)[0]
else:
border_ratios = np.mean(is_border, axis=0)
indices = np.where(border_ratios < 0.95)[0]
if len(indices) == 0:
return 0, img_strip.shape[1] if is_vertical else img_strip.shape[0]
return indices[0], indices[-1]
def adjust_split_line(self, img_np, split_pos, is_vertical=True, margin=15):
"""
调整分割线附近的边界
"""
height, width = img_np.shape[:2]
if is_vertical:
left_bound = max(0, split_pos - margin)
right_bound = min(width, split_pos + margin)
strip = img_np[:, left_bound:right_bound]
start, end = self.detect_split_borders(strip, False)
start = max(0, start - 5)
end = min(strip.shape[1], end + 5)
return left_bound + start, left_bound + end
else:
top_bound = max(0, split_pos - margin)
bottom_bound = min(height, split_pos + margin)
strip = img_np[top_bound:bottom_bound, :]
start, end = self.detect_split_borders(strip, True)
start = max(0, start - 5)
end = min(strip.shape[0], end + 5)
return top_bound + start, top_bound + end
def find_split_positions(self, image, num_splits, is_vertical, split_method):
if split_method == "uniform":
size = image.shape[1] if is_vertical else image.shape[0]
return [i * size // (num_splits + 1) for i in range(1, num_splits + 1)]
else:
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
edges = cv2.Canny(gray, 50, 150)
edge_density = np.sum(edges, axis=0) if is_vertical else np.sum(edges, axis=1)
window_size = len(edge_density) // (num_splits + 1) // 2
smoothed_density = np.convolve(edge_density, np.ones(window_size)/window_size, mode='same')
split_positions = []
for i in range(1, num_splits + 1):
start = i * len(smoothed_density) // (num_splits + 1) - window_size
end = i * len(smoothed_density) // (num_splits + 1) + window_size
split = start + np.argmin(smoothed_density[start:end])
split_positions.append(split)
return split_positions
def split_image(self, image, rows, cols, row_split_method, col_split_method):
if len(image.shape) == 3:
image = image.unsqueeze(0)
img_np = (image[0].cpu().numpy() * 255).astype(np.uint8)
height, width = img_np.shape[:2]
# 获取分割位置
vertical_splits = self.find_split_positions(img_np, cols - 1, True, col_split_method)
horizontal_splits = self.find_split_positions(img_np, rows - 1, False, row_split_method)
# 创建预览图
preview_img = image.clone()
green_line = torch.tensor([0.0, 1.0, 0.0]).view(1, 1, 1, 3)
for x in vertical_splits:
preview_img[:, :, x:x+2, :] = green_line
for y in horizontal_splits:
preview_img[:, y:y+2, :, :] = green_line
# 调整分割位置
adjusted_v_splits = []
for split in vertical_splits:
left, right = self.adjust_split_line(img_np, split, True)
adjusted_v_splits.extend([left, right])
adjusted_h_splits = []
for split in horizontal_splits:
top, bottom = self.adjust_split_line(img_np, split, False)
adjusted_h_splits.extend([top, bottom])
# 获取分割边界
h_splits = [0] + sorted(adjusted_h_splits) + [height]
v_splits = [0] + sorted(adjusted_v_splits) + [width]
# 处理所有分割区域
split_images = []
max_h = 0
max_w = 0
# 第一次遍历: 找出所有裁剪后图片的最大宽度和高度
temp_splits = []
for i in range(0, len(h_splits)-1, 2):
for j in range(0, len(v_splits)-1, 2):
top = h_splits[i]
bottom = h_splits[i+1]
left = v_splits[j]
right = v_splits[j+1]
cell_np = img_np[top:bottom, left:right]
trimmed_cell = self.remove_external_borders(cell_np)
temp_splits.append(trimmed_cell)
h, w = trimmed_cell.shape[:2]
max_h = max(max_h, h)
max_w = max(max_w, w)
# 第二次遍历: 将所有图片调整为相同尺寸,保持原始比例
for cell_np in temp_splits:
h, w = cell_np.shape[:2]
# 计算缩放比例
scale = min(max_h/h, max_w/w)
new_h = int(h * scale)
new_w = int(w * scale)
# 居中放置
resized = cv2.resize(cell_np, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4)
canvas = np.zeros((max_h, max_w, 3), dtype=np.uint8)
y_offset = (max_h - new_h) // 2
x_offset = (max_w - new_w) // 2
canvas[y_offset:y_offset+new_h, x_offset:x_offset+new_w] = resized
# 转换为tensor
cell_tensor = torch.from_numpy(canvas).float() / 255.0
cell_tensor = cell_tensor.unsqueeze(0)
split_images.append(cell_tensor)
stacked_images = torch.cat(split_images, dim=0)
if stacked_images.shape[-1] != 3:
stacked_images = stacked_images.permute(0, 2, 3, 1)
print(f"Final stacked shape: {stacked_images.shape}")
return (preview_img, stacked_images)
NODE_CLASS_MAPPINGS = {
"GridImageSplitter": GridImageSplitter
}