Skip to content

Commit 87260d5

Browse files
committed
fix doc
1 parent f2d8141 commit 87260d5

File tree

3 files changed

+6
-6
lines changed

3 files changed

+6
-6
lines changed

chapter05/mlpClass.m

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
1-
function [model, L] = mlpClass(X,y,k,lambda)
2-
% Train a multilayer perceptron neural network for classification with backpropagation
1+
function [model, L] = mlpClass(X, y, k, lambda)
2+
% Train a multilayer perceptron neural network for multiclass classification with backpropagation
33
% logistic activation function is used.
44
% Input:
55
% X: d x n data matrix
6-
% Y: p x n response matrix
6+
% y: 1 x n label vector
77
% k: T x 1 vector to specify number of hidden nodes in each layer
88
% lambda: regularization parameter
99
% Ouput:

chapter05/mlpReg.m

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
1-
function [model, L] = mlpReg(X,y,k,lambda)
1+
function [model, L] = mlpReg(X, y, k, lambda)
22
% Train a multilayer perceptron neural network for regression with backpropagation
33
% tanh activation function is used
44
% Input:
55
% X: d x n data matrix
6-
% y: p x n response matrix
6+
% y: 1 x n real value response vector
77
% k: T x 1 vector to specify number of hidden nodes in each layer
88
% lambda: regularization parameter
99
% Ouput:

demo/ch05/mlp_demo.m

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
lambda = 1e-2;
2727
[model, llh] = mlpClass(X,y,h,lambda);
2828
[t,p] = mlpClassPred(model,X);
29+
plot(llh);
2930
figure;
3031
plotClass(X,t);
3132
figure;
32-
plot(llh);

0 commit comments

Comments
 (0)