|
| 1 | +import numpy as np |
| 2 | +import torch |
| 3 | +from absl import app, flags |
| 4 | +from hydra.experimental import initialize, compose |
| 5 | +from moviepy.editor import * |
| 6 | +from moviepy.video.io.ImageSequenceClip import ImageSequenceClip |
| 7 | +from omegaconf import OmegaConf, ListConfig |
| 8 | +from rlbench.action_modes.action_mode import MoveArmThenGripper |
| 9 | +from rlbench.action_modes.arm_action_modes import EndEffectorPoseViaPlanning |
| 10 | +from rlbench.action_modes.gripper_action_modes import Discrete |
| 11 | +from rlbench.backend.utils import task_file_to_task_class |
| 12 | + |
| 13 | +from arm import c2farm, qte, lpr |
| 14 | +from arm.custom_rlbench_env import CustomRLBenchEnv |
| 15 | +from arm.lpr.trajectory_action_mode import TrajectoryActionMode |
| 16 | +from launch import _create_obs_config |
| 17 | +from tools.utils import RLBenchCinematic |
| 18 | + |
| 19 | +FREEZE_DURATION = 2 |
| 20 | +FPS = 20 |
| 21 | + |
| 22 | +flags.DEFINE_string('logdir', '/path/to/log/dir', 'weight dir.') |
| 23 | +flags.DEFINE_string('method', 'C2FARM', 'The method to run.') |
| 24 | +flags.DEFINE_string('task', 'take_lid_off_saucepan', 'The task to run.') |
| 25 | +flags.DEFINE_integer('episodes', 1, 'The number of episodes to run.') |
| 26 | + |
| 27 | +FLAGS = flags.FLAGS |
| 28 | + |
| 29 | + |
| 30 | +def _save_clips(clips, name): |
| 31 | + final_clip = concatenate_videoclips(clips) |
| 32 | + final_clip.write_videofile('%s.mp4' % name) |
| 33 | + |
| 34 | + |
| 35 | +def visualise(logdir, task, method): |
| 36 | + config_path = os.path.join(logdir, task, method, '.hydra') |
| 37 | + weights_path = os.path.join(logdir, task, method, 'seed0', 'weights') |
| 38 | + |
| 39 | + if not os.path.exists(config_path): |
| 40 | + raise ValueError('No cofig in: ' + config_path) |
| 41 | + if not os.path.exists(weights_path): |
| 42 | + raise ValueError('No weights in: ' + weights_path) |
| 43 | + |
| 44 | + with initialize(config_path=os.path.relpath(config_path)): |
| 45 | + cfg = compose(config_name="config") |
| 46 | + print(OmegaConf.to_yaml(cfg)) |
| 47 | + |
| 48 | + cfg.rlbench.cameras = cfg.rlbench.cameras if isinstance( |
| 49 | + cfg.rlbench.cameras, ListConfig) else [cfg.rlbench.cameras] |
| 50 | + |
| 51 | + obs_config = _create_obs_config( |
| 52 | + cfg.rlbench.cameras, cfg.rlbench.camera_resolution) |
| 53 | + task_class = task_file_to_task_class(task) |
| 54 | + |
| 55 | + gripper_mode = Discrete() |
| 56 | + if cfg.method.name == 'PathARM': |
| 57 | + arm_action_mode = TrajectoryActionMode(cfg.method.trajectory_points) |
| 58 | + else: |
| 59 | + arm_action_mode = EndEffectorPoseViaPlanning() |
| 60 | + action_mode = MoveArmThenGripper(arm_action_mode, gripper_mode) |
| 61 | + |
| 62 | + env = CustomRLBenchEnv( |
| 63 | + task_class=task_class, observation_config=obs_config, |
| 64 | + action_mode=action_mode, dataset_root=cfg.rlbench.demo_path, |
| 65 | + episode_length=cfg.rlbench.episode_length, headless=True, |
| 66 | + time_in_state=True) |
| 67 | + _ = env.observation_elements |
| 68 | + |
| 69 | + if cfg.method.name == 'C2FARM': |
| 70 | + agent = c2farm.launch_utils.create_agent( |
| 71 | + cfg, env, cfg.rlbench.scene_bounds, |
| 72 | + cfg.rlbench.camera_resolution) |
| 73 | + elif cfg.method.name == 'C2FARM+QTE': |
| 74 | + agent = qte.launch_utils.create_agent( |
| 75 | + cfg, env, cfg.rlbench.scene_bounds, |
| 76 | + cfg.rlbench.camera_resolution) |
| 77 | + elif cfg.method.name == 'LPR': |
| 78 | + agent = lpr.launch_utils.create_agent( |
| 79 | + cfg, env, cfg.rlbench.scene_bounds, cfg.rlbench.camera_resolution, |
| 80 | + cfg.method.trajectory_point_noise, cfg.method.trajectory_points, |
| 81 | + cfg.method.trajectory_mode, cfg.method.trajectory_samples) |
| 82 | + else: |
| 83 | + raise ValueError('Invalid method name.') |
| 84 | + |
| 85 | + agent.build(training=False, device=torch.device("cpu")) |
| 86 | + weight_folders = sorted(map(int, os.listdir(weights_path))) |
| 87 | + agent.load_weights(os.path.join(weights_path, str(weight_folders[-1]))) |
| 88 | + |
| 89 | + env.launch() |
| 90 | + cinemtaic_cam = RLBenchCinematic() |
| 91 | + env.register_callback(cinemtaic_cam.callback) |
| 92 | + for ep in range(FLAGS.episodes): |
| 93 | + obs = env.reset() |
| 94 | + agent.reset() |
| 95 | + obs_history = { |
| 96 | + k: [np.array(v, dtype=_get_type(v))] * cfg.replay.timesteps for |
| 97 | + k, v in obs.items()} |
| 98 | + clips = [] |
| 99 | + last = False |
| 100 | + for step in range(cfg.rlbench.episode_length): |
| 101 | + prepped_data = {k: torch.FloatTensor([v]) for k, v in obs_history.items()} |
| 102 | + act_result = agent.act(step, prepped_data, deterministic=True) |
| 103 | + transition = env.step(act_result) |
| 104 | + |
| 105 | + trajectory_frames = cinemtaic_cam.frames |
| 106 | + if len(trajectory_frames) > 0: |
| 107 | + cinemtaic_cam.empty() |
| 108 | + clips.append(ImageSequenceClip(trajectory_frames, fps=FPS)) |
| 109 | + |
| 110 | + if last: |
| 111 | + break |
| 112 | + if transition.terminal: |
| 113 | + last = True |
| 114 | + for k in obs_history.keys(): |
| 115 | + obs_history[k].append(transition.observation[k]) |
| 116 | + obs_history[k].pop(0) |
| 117 | + _save_clips(clips, '%s_%s.mp4' % (method, task)) |
| 118 | + |
| 119 | + print('Shutting down env...') |
| 120 | + env.shutdown() |
| 121 | + |
| 122 | + |
| 123 | +def _get_type(x): |
| 124 | + if x.dtype == np.float64: |
| 125 | + return np.float32 |
| 126 | + return x.dtype |
| 127 | + |
| 128 | + |
| 129 | +def main(argv): |
| 130 | + del argv |
| 131 | + visualise(FLAGS.logdir, FLAGS.task, FLAGS.method) |
| 132 | + |
| 133 | + |
| 134 | +if __name__ == '__main__': |
| 135 | + app.run(main) |
0 commit comments