-
Notifications
You must be signed in to change notification settings - Fork 48
/
rb_tree.py
525 lines (459 loc) · 20.9 KB
/
rb_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
"""
A classic (not left-leaning) Red-Black Tree implementation, supporting addition and deletion.
"""
# The possible Node colors
BLACK = 'BLACK'
RED = 'RED'
NIL = 'NIL'
class Node:
def __init__(self, value, color, parent, left=None, right=None):
self.value = value
self.color = color
self.parent = parent
self.left = left
self.right = right
def __repr__(self):
return '{color} {val} Node'.format(color=self.color, val=self.value)
def __iter__(self):
if self.left.color != NIL:
yield from self.left.__iter__()
yield self.value
if self.right.color != NIL:
yield from self.right.__iter__()
def __eq__(self, other):
if self.color == NIL and self.color == other.color:
return True
if self.parent is None or other.parent is None:
parents_are_same = self.parent is None and other.parent is None
else:
parents_are_same = self.parent.value == other.parent.value and self.parent.color == other.parent.color
return self.value == other.value and self.color == other.color and parents_are_same
def has_children(self) -> bool:
""" Returns a boolean indicating if the node has children """
return bool(self.get_children_count())
def get_children_count(self) -> int:
""" Returns the number of NOT NIL children the node has """
if self.color == NIL:
return 0
return sum([int(self.left.color != NIL), int(self.right.color != NIL)])
class RedBlackTree:
# every node has null nodes as children initially, create one such object for easy management
NIL_LEAF = Node(value=None, color=NIL, parent=None)
def __init__(self):
self.count = 0
self.root = None
self.ROTATIONS = {
# Used for deletion and uses the sibling's relationship with his parent as a guide to the rotation
'L': self._right_rotation,
'R': self._left_rotation
}
def __iter__(self):
if not self.root:
return list()
yield from self.root.__iter__()
def add(self, value):
if not self.root:
self.root = Node(value, color=BLACK, parent=None, left=self.NIL_LEAF, right=self.NIL_LEAF)
self.count += 1
return
parent, node_dir = self._find_parent(value)
if node_dir is None:
return # value is in the tree
new_node = Node(value=value, color=RED, parent=parent, left=self.NIL_LEAF, right=self.NIL_LEAF)
if node_dir == 'L':
parent.left = new_node
else:
parent.right = new_node
self._try_rebalance(new_node)
self.count += 1
def remove(self, value):
"""
Try to get a node with 0 or 1 children.
Either the node we're given has 0 or 1 children or we get its successor.
"""
node_to_remove = self.find_node(value)
if node_to_remove is None: # node is not in the tree
return
if node_to_remove.get_children_count() == 2:
# find the in-order successor and replace its value.
# then, remove the successor
successor = self._find_in_order_successor(node_to_remove)
node_to_remove.value = successor.value # switch the value
node_to_remove = successor
# has 0 or 1 children!
self._remove(node_to_remove)
self.count -= 1
def contains(self, value) -> bool:
""" Returns a boolean indicating if the given value is present in the tree """
return bool(self.find_node(value))
def ceil(self, value) -> int or None:
"""
Given a value, return the closest value that is equal or bigger than it,
returning None when no such exists
"""
if self.root is None: return None
last_found_val = None if self.root.value < value else self.root.value
def find_ceil(node):
nonlocal last_found_val
if node == self.NIL_LEAF:
return None
if node.value == value:
last_found_val = node.value
return node.value
elif node.value < value:
# go right
return find_ceil(node.right)
else:
# this node is bigger, save its value and go left
last_found_val = node.value
return find_ceil(node.left)
find_ceil(self.root)
return last_found_val
def floor(self, value) -> int or None:
"""
Given a value, return the closest value that is equal or less than it,
returning None when no such exists
"""
if self.root is None: return None
last_found_val = None if self.root.value > value else self.root.value
def find_floor(node):
nonlocal last_found_val
if node == self.NIL_LEAF:
return None
if node.value == value:
last_found_val = node.value
return node.value
elif node.value < value:
# this node is smaller, save its value and go right, trying to find a cloer one
last_found_val = node.value
return find_floor(node.right)
else:
return find_floor(node.left)
find_floor(self.root)
return last_found_val
def _remove(self, node):
"""
Receives a node with 0 or 1 children (typically some sort of successor)
and removes it according to its color/children
:param node: Node with 0 or 1 children
"""
left_child = node.left
right_child = node.right
not_nil_child = left_child if left_child != self.NIL_LEAF else right_child
if node == self.root:
if not_nil_child != self.NIL_LEAF:
# if we're removing the root and it has one valid child, simply make that child the root
self.root = not_nil_child
self.root.parent = None
self.root.color = BLACK
else:
self.root = None
elif node.color == RED:
if not node.has_children():
# Red node with no children, the simplest remove
self._remove_leaf(node)
else:
"""
Since the node is red he cannot have a child.
If he had a child, it'd need to be black, but that would mean that
the black height would be bigger on the one side and that would make our tree invalid
"""
raise Exception('Unexpected behavior')
else: # node is black!
if right_child.has_children() or left_child.has_children(): # sanity check
raise Exception('The red child of a black node with 0 or 1 children'
' cannot have children, otherwise the black height of the tree becomes invalid! ')
if not_nil_child.color == RED:
"""
Swap the values with the red child and remove it (basically un-link it)
Since we're a node with one child only, we can be sure that there are no nodes below the red child.
"""
node.value = not_nil_child.value
node.left = not_nil_child.left
node.right = not_nil_child.right
else: # BLACK child
# 6 cases :o
self._remove_black_node(node)
def _remove_leaf(self, leaf):
""" Simply removes a leaf node by making it's parent point to a NIL LEAF"""
if leaf.value >= leaf.parent.value:
# in those weird cases where they're equal due to the successor swap
leaf.parent.right = self.NIL_LEAF
else:
leaf.parent.left = self.NIL_LEAF
def _remove_black_node(self, node):
"""
Loop through each case recursively until we reach a terminating case.
What we're left with is a leaf node which is ready to be deleted without consequences
"""
self.__case_1(node)
self._remove_leaf(node)
def __case_1(self, node):
"""
Case 1 is when there's a double black node on the root
Because we're at the root, we can simply remove it
and reduce the black height of the whole tree.
__|10B|__ __10B__
/ \ ==> / \
9B 20B 9B 20B
"""
if self.root == node:
node.color = BLACK
return
self.__case_2(node)
def __case_2(self, node):
"""
Case 2 applies when
the parent is BLACK
the sibling is RED
the sibling's children are BLACK or NIL
It takes the sibling and rotates it
40B 60B
/ \ --CASE 2 ROTATE--> / \
|20B| 60R LEFT ROTATE 40R 80B
DBL BLACK IS 20----^ / \ SIBLING 60R / \
50B 80B |20B| 50B
(if the sibling's direction was left of it's parent, we would RIGHT ROTATE it)
Now the original node's parent is RED
and we can apply case 4 or case 6
"""
parent = node.parent
sibling, direction = self._get_sibling(node)
if sibling.color == RED and parent.color == BLACK and sibling.left.color != RED and sibling.right.color != RED:
self.ROTATIONS[direction](node=None, parent=sibling, grandfather=parent)
parent.color = RED
sibling.color = BLACK
return self.__case_1(node)
self.__case_3(node)
def __case_3(self, node):
"""
Case 3 deletion is when:
the parent is BLACK
the sibling is BLACK
the sibling's children are BLACK
Then, we make the sibling red and
pass the double black node upwards
Parent is black
___50B___ Sibling is black ___50B___
/ \ Sibling's children are black / \
30B 80B CASE 3 30B |80B| Continue with other cases
/ \ / \ ==> / \ / \
20B 35R 70B |90B|<---REMOVE 20B 35R 70R X
/ \ / \
34B 37B 34B 37B
"""
parent = node.parent
sibling, _ = self._get_sibling(node)
if (sibling.color == BLACK and parent.color == BLACK
and sibling.left.color != RED and sibling.right.color != RED):
# color the sibling red and forward the double black node upwards
# (call the cases again for the parent)
sibling.color = RED
return self.__case_1(parent) # start again
self.__case_4(node)
def __case_4(self, node):
"""
If the parent is red and the sibling is black with no red children,
simply swap their colors
DB-Double Black
__10R__ __10B__ The black height of the left subtree has been incremented
/ \ / \ And the one below stays the same
DB 15B ===> X 15R No consequences, we're done!
/ \ / \
12B 17B 12B 17B
"""
parent = node.parent
if parent.color == RED:
sibling, direction = self._get_sibling(node)
if sibling.color == BLACK and sibling.left.color != RED and sibling.right.color != RED:
parent.color, sibling.color = sibling.color, parent.color # switch colors
return # Terminating
self.__case_5(node)
def __case_5(self, node):
"""
Case 5 is a rotation that changes the circumstances so that we can do a case 6
If the closer node is red and the outer BLACK or NIL, we do a left/right rotation, depending on the orientation
This will showcase when the CLOSER NODE's direction is RIGHT
___50B___ __50B__
/ \ / \
30B |80B| <-- Double black 35B |80B| Case 6 is now
/ \ / \ Closer node is red (35R) / \ / applicable here,
20B 35R 70R X Outer is black (20B) 30R 37B 70R so we redirect the node
/ \ So we do a LEFT ROTATION / \ to it :)
34B 37B on 35R (closer node) 20B 34B
"""
sibling, direction = self._get_sibling(node)
closer_node = sibling.right if direction == 'L' else sibling.left
outer_node = sibling.left if direction == 'L' else sibling.right
if closer_node.color == RED and outer_node.color != RED and sibling.color == BLACK:
if direction == 'L':
self._left_rotation(node=None, parent=closer_node, grandfather=sibling)
else:
self._right_rotation(node=None, parent=closer_node, grandfather=sibling)
closer_node.color = BLACK
sibling.color = RED
self.__case_6(node)
def __case_6(self, node):
"""
Case 6 requires
SIBLING to be BLACK
OUTER NODE to be RED
Then, does a right/left rotation on the sibling
This will showcase when the SIBLING's direction is LEFT
Double Black
__50B__ | __35B__
/ \ | / \
SIBLING--> 35B |80B| <- 30R 50R
/ \ / / \ / \
30R 37B 70R Outer node is RED 20B 34B 37B 80B
/ \ Closer node doesn't /
20B 34B matter 70R
Parent doesn't
matter
So we do a right rotation on 35B!
"""
sibling, direction = self._get_sibling(node)
outer_node = sibling.left if direction == 'L' else sibling.right
def __case_6_rotation(direction):
parent_color = sibling.parent.color
self.ROTATIONS[direction](node=None, parent=sibling, grandfather=sibling.parent)
# new parent is sibling
sibling.color = parent_color
sibling.right.color = BLACK
sibling.left.color = BLACK
if sibling.color == BLACK and outer_node.color == RED:
return __case_6_rotation(direction) # terminating
raise Exception('We should have ended here, something is wrong')
def _try_rebalance(self, node):
"""
Given a red child node, determine if there is a need to rebalance (if the parent is red)
If there is, rebalance it
"""
parent = node.parent
value = node.value
if (parent is None # what the fuck? (should not happen)
or parent.parent is None # parent is the root
or (node.color != RED or parent.color != RED)): # no need to rebalance
return
grandfather = parent.parent
node_dir = 'L' if parent.value > value else 'R'
parent_dir = 'L' if grandfather.value > parent.value else 'R'
uncle = grandfather.right if parent_dir == 'L' else grandfather.left
general_direction = node_dir + parent_dir
if uncle == self.NIL_LEAF or uncle.color == BLACK:
# rotate
if general_direction == 'LL':
self._right_rotation(node, parent, grandfather, to_recolor=True)
elif general_direction == 'RR':
self._left_rotation(node, parent, grandfather, to_recolor=True)
elif general_direction == 'LR':
self._right_rotation(node=None, parent=node, grandfather=parent)
# due to the prev rotation, our node is now the parent
self._left_rotation(node=parent, parent=node, grandfather=grandfather, to_recolor=True)
elif general_direction == 'RL':
self._left_rotation(node=None, parent=node, grandfather=parent)
# due to the prev rotation, our node is now the parent
self._right_rotation(node=parent, parent=node, grandfather=grandfather, to_recolor=True)
else:
raise Exception("{} is not a valid direction!".format(general_direction))
else: # uncle is RED
self._recolor(grandfather)
def __update_parent(self, node, parent_old_child, new_parent):
"""
Our node 'switches' places with the old child
Assigns a new parent to the node.
If the new_parent is None, this means that our node becomes the root of the tree
"""
node.parent = new_parent
if new_parent:
# Determine the old child's position in order to put node there
if new_parent.value > parent_old_child.value:
new_parent.left = node
else:
new_parent.right = node
else:
self.root = node
def _right_rotation(self, node, parent, grandfather, to_recolor=False):
grand_grandfather = grandfather.parent
self.__update_parent(node=parent, parent_old_child=grandfather, new_parent=grand_grandfather)
old_right = parent.right
parent.right = grandfather
grandfather.parent = parent
grandfather.left = old_right # save the old right values
old_right.parent = grandfather
if to_recolor:
parent.color = BLACK
node.color = RED
grandfather.color = RED
def _left_rotation(self, node, parent, grandfather, to_recolor=False):
grand_grandfather = grandfather.parent
self.__update_parent(node=parent, parent_old_child=grandfather, new_parent=grand_grandfather)
old_left = parent.left
parent.left = grandfather
grandfather.parent = parent
grandfather.right = old_left # save the old left values
old_left.parent = grandfather
if to_recolor:
parent.color = BLACK
node.color = RED
grandfather.color = RED
def _recolor(self, grandfather):
grandfather.right.color = BLACK
grandfather.left.color = BLACK
if grandfather != self.root:
grandfather.color = RED
self._try_rebalance(grandfather)
def _find_parent(self, value):
""" Finds a place for the value in our binary tree"""
def inner_find(parent):
"""
Return the appropriate parent node for our new node as well as the side it should be on
"""
if value == parent.value:
return None, None
elif parent.value < value:
if parent.right.color == NIL: # no more to go
return parent, 'R'
return inner_find(parent.right)
elif value < parent.value:
if parent.left.color == NIL: # no more to go
return parent, 'L'
return inner_find(parent.left)
return inner_find(self.root)
def find_node(self, value):
def inner_find(root):
if root is None or root == self.NIL_LEAF:
return None
if value > root.value:
return inner_find(root.right)
elif value < root.value:
return inner_find(root.left)
else:
return root
found_node = inner_find(self.root)
return found_node
def _find_in_order_successor(self, node):
right_node = node.right
left_node = right_node.left
if left_node == self.NIL_LEAF:
return right_node
while left_node.left != self.NIL_LEAF:
left_node = left_node.left
return left_node
def _get_sibling(self, node):
"""
Returns the sibling of the node, as well as the side it is on
e.g
20 (A)
/ \
15(B) 25(C)
_get_sibling(25(C)) => 15(B), 'R'
"""
parent = node.parent
if node.value >= parent.value:
sibling = parent.left
direction = 'L'
else:
sibling = parent.right
direction = 'R'
return sibling, direction