-
Notifications
You must be signed in to change notification settings - Fork 52
/
pyproject.toml
77 lines (72 loc) · 2.83 KB
/
pyproject.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
[build-system]
requires = ["setuptools>=45", "wheel", "setuptools_scm[toml]>=6.2"]
build-backend = "setuptools.build_meta"
[project]
name = "ares-ai"
version = "0.6.6"
description = """
ARES is an advanced evaluation framework for Retrieval-Augmented Generation (RAG) systems,
utilizing fine-tuned classifiers and synthetic data to assess performance efficiently. It streamlines
the evaluation of context relevance, answer faithfulness, and answer relevance with minimal human annotations.
"""
readme = "README.md"
authors = [
{ name = "Jon Saad-Falcon", email = "[email protected]" },
{ name = "Robby Manihani", email = "[email protected]"},
{ name = "Omar Khattab", email = "[email protected]"},
{ name = "Christopher Potts", email = "[email protected]"},
{ name = "Matei Zaharia", email = "[email protected]"}
]
license = { file="LICENSE" }
classifiers = [
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Topic :: Software Development :: Libraries :: Python Modules",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11"
]
keywords = ["RAG", "RAG Scoring", "RAG Systems", "Automated Evaluation Framework", "Retrieval-Augmented Generation Systems",
"LLM Judges", "Natural Language Processing", "Machine Learning", "RAG Evaluation", "Context Relevance", "Answer Faithfulness",
"Answer Relevance", "Synthetic Queries", "Synthetic Answers", "In-Domain Passages", "Key Performance Metrics", "Human Preference Validation Set"]
dependencies = [
"accelerate >=0.21.0, <1.0.0",
"anthropic >= 0.25.7",
"Cython >=0.29.35",
"datasets >=2.12.0",
"evaluate==0.4.2",
"fastapi == 0.110.2",
"faiss-cpu >= 1.8.0",
"ipywidgets == 7.7.1",
"joblib >=1.2.0, <2.0.0",
"matplotlib >=3.7.1, <4.0.0",
"matplotlib-inline >=0.1.6, <0.2.0",
"nltk >=3.8.1, <4.0.0",
"numexpr >=2.8.4, <3.0.0",
"numpy >=1.20.0, <2.0.0",
"openai == 1.14.2",
"pandas >= 2.0.1",
"python-dateutil >=2.8.2,<3.0.0",
"pytorch-ranger >=0.1.1,<0.2.0",
"pytz >=2023.3,<2024.0",
"PyYAML >=6.0,<7.0",
"requests >=2.25.1, <3.0.0",
"scikit-learn >=1.5.0,<1.6.0",
"scipy >=1.10.1,<1.11.0",
"sentencepiece==0.1.99",
"sentence-transformers >=2.2.2,<3.0.0",
"spacy >=3.5.3,<4.0.0",
"torch >= 2.2.1",
"together >= 1.1.0",
"tokenizers >=0.13.3",
"transformers == 4.40.1",
]
[project.optional-dependencies]
vllm = ["vllm == 0.4.1"]
[project.urls]
documentation = "https://github.com/stanford-futuredata/ARES/tree/new-dev/docs"
repository = "https://github.com/stanford-futuredata/ARES/tree/main"
changelog = "https://github.com/stanford-futuredata/ARES/blob/new-dev/CHANGELOG.md"
[project.scripts]
ares-cli = "ares.cli:main"