forked from plclub/metalib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMetatheoryAlt.v
269 lines (194 loc) · 7.32 KB
/
MetatheoryAlt.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
(* This file is distributed under the terms of the MIT License, also
known as the X11 Licence. A copy of this license is in the README
file that accompanied the original distribution of this file.
Based on code written by:
Brian Aydemir
Arthur Charg\'eraud *)
Require Export Coq.Arith.Arith.
Require Export Coq.FSets.FSets.
Require Export Coq.Lists.List.
Require Export CoqEqDec.
Require Export CoqListFacts.
Require Export LibTactics.
Require Export MetatheoryAtom.
(* Require Export MetatheoryEnv. *)
Require Export AssumeList.
(* ********************************************************************** *)
(** * Decidable equality *)
(** We prefer that "==" refer to decidable equality at [eq], as
defined by the [EqDec_eq] class from the CoqEqDec library. *)
Notation " x == y " := (eq_dec x y) (at level 70) : coqeqdec_scope.
Open Scope coqeqdec_scope.
(* ********************************************************************** *)
(** * Notations for finite sets of atoms *)
(** Common set operations and constants may be written using more
convenient notations. *)
Notation "E [=] F" :=
(AtomSetImpl.Equal E F)
(at level 70, no associativity)
: set_scope.
Notation "E [<=] F" :=
(AtomSetImpl.Subset E F)
(at level 70, no associativity)
: set_scope.
Notation "{}" :=
(AtomSetImpl.empty)
: set_scope.
Notation "{{ x }}" :=
(AtomSetImpl.singleton x)
: set_scope.
Notation "x `in` E" :=
(AtomSetImpl.In x E)
(at level 70)
: set_hs_scope.
Notation "x `notin` E" :=
(~ AtomSetImpl.In x E)
(at level 70)
: set_hs_scope.
Notation "E `union` F" :=
(AtomSetImpl.union E F)
(at level 65, right associativity, format "E `union` '/' F")
: set_hs_scope.
(** We define some abbreviations for the empty set, singleton
sets, and the union of two sets. *)
Notation add := AtomSetImpl.add.
Notation empty := AtomSetImpl.empty.
Notation remove := AtomSetImpl.remove.
Notation singleton := AtomSetImpl.singleton.
Notation union := AtomSetImpl.union.
(** Open the notation scopes declared above. *)
Open Scope set_scope.
Open Scope set_hs_scope.
(* ********************************************************************** *)
(** * Environments *)
(** As an alternative to the [x ~ a] notation, we also provide more
list-like notation for writing association lists consisting of a
single binding.
Implementation note: The following notation overlaps with the
standard recursive notation for lists, e.g., the one found in the
Program library of Coq's standard library. *)
(* Notation "[ x ]" := (EnvImpl.one x) : env_scope.
Open Scope env_scope.
*)
(* ********************************************************************** *)
(** * Cofinite quantification *)
(** Consider a rule [H] (equivalently, constructor, lemma, etc.) whose
type begins with [forall L, ...] and contains hypotheses of the
form [(forall y, y `notin` L -> ...)].
The tactic [(pick fresh x excluding F and apply H)] applies [H] to
the current goal, instantiating [H]'s first argument ([L]) with
the finite set of atoms [F]. In each new subgoal of the form
[(forall y, y `notin` F -> ...)], the atom [y] is introduced as
[x], and [(y `notin` F)] is introduced using a generated name.
If we view [H] as a rule that uses cofinite quantification, the
tactic can be read as picking a sufficiently fresh atom to open a
term with. *)
Tactic Notation
"pick" "fresh" ident(atom_name)
"excluding" constr(L)
"and" "apply" constr(H)
:=
first [apply (@H L) | eapply (@H L)];
match goal with
| |- forall _, _ `notin` _ -> _ =>
let Fr := fresh "Fr" in intros atom_name Fr
| |- forall _, _ `notin` _ -> _ =>
fail 1 "because" atom_name "is already defined"
| _ =>
idtac
end.
(** The following variant of the tactic excludes the set of atoms
returned by the [gather_atoms] tactic. Redefine [gather_atoms] if
you wish to modify the behavior of this tactic. *)
Tactic Notation
"pick" "fresh" ident(atom_name)
"and" "apply" constr(H)
:=
let L := gather_atoms in
let L := beautify_fset L in
pick fresh atom_name excluding L and apply H.
(* ********************************************************************** *)
(** * Lemma aliases *)
(** A number of useful lemmas are given standardized, if somewhat
unintuitive, names. Here, we define some intuitive aliases for
them. *)
Notation uniq_one := uniq_one_1.
Notation uniq_cons := uniq_cons_3.
Notation uniq_app := uniq_app_4.
Notation uniq_map := uniq_map_2.
Notation binds_one := binds_one_3.
Notation binds_cons := binds_cons_3.
Notation binds_app_l := binds_app_2.
Notation binds_app_r := binds_app_3.
Notation binds_map := binds_map_2.
Notation notin_empty := notin_empty_1.
Notation notin_add := notin_add_3.
Notation notin_singleton := notin_singleton_2.
Notation notin_union := notin_union_3.
(* ********************************************************************** *)
(** * Hints *)
(** The next block of hints is to help [auto] discharge many of the
inequality and freshness goals that arise in programming language
metatheory proofs. *)
Ltac hint_extern_solve_notin :=
autorewrite with rewr_dom in *;
destruct_notin;
repeat first [ apply notin_union_3
| apply notin_add_3
| apply notin_singleton_2
| apply notin_empty_1
];
try tauto.
Hint Extern 1 (_ <> _ :> _) => hint_extern_solve_notin.
Hint Extern 1 (_ `notin` _) => hint_extern_solve_notin.
(** The next block of hints are occasionally useful when reasoning
about finite sets. In some instances, they obviate the need to
use [auto with set]. *)
Hint Resolve
AtomSetImpl.add_1 AtomSetImpl.add_2 AtomSetImpl.remove_1
AtomSetImpl.remove_2 AtomSetImpl.singleton_2 AtomSetImpl.union_2
AtomSetImpl.union_3 AtomSetImpl.inter_3 AtomSetImpl.diff_3.
(* ********************************************************************** *)
(** * Ott compatibility *)
(** Implementation note (BEA): The following definitions make this
library usable with the output of Ott's locally nameless backend.
They may disappear or change as Ott changes. *)
Notation var := atom (only parsing).
Notation vars := atoms (only parsing).
Notation eq_var := eq_dec (only parsing).
Notation "x === y" :=
(x == y)
(at level 70, only parsing)
: coqeqdec_scope.
Notation "x \in s" :=
(x `in` s)
(at level 70, only parsing)
: set_sl_scope.
Notation "x \notin s" :=
(x `notin` s)
(at level 70, only parsing)
: set_sl_scope.
Notation "s \u t" :=
(s `union` t)
(at level 65, right associativity, only parsing)
: set_sl_scope.
Open Scope set_sl_scope.
Ltac gather_vars_with F := gather_atoms_with.
Ltac pick_fresh_gen L Y := pick fresh Y for L.
Tactic Notation "auto" "*" := auto.
Ltac apply_fresh_base H gather_vars atom_name :=
let L := gather_vars in
let L := beautify_fset L in
pick fresh x excluding L and apply H.
Definition env (A : Type) := list (atom * A).
(** We provide alternative names for tactics on association lists. *)
Ltac simpl_env :=
simpl_asnlist.
Tactic Notation "simpl_env" "in" hyp(H) :=
simpl_asnlist in H.
Tactic Notation "simpl_env" "in" "*" :=
simpl_asnlist in *.
Tactic Notation "rewrite_env" constr(E) :=
rewrite_asnlist E.
Tactic Notation "rewrite_env" constr(E) "in" hyp(H) :=
rewrite_asnlist E in H.