Skip to content

Latest commit

 

History

History
263 lines (194 loc) · 10.3 KB

README.md

File metadata and controls

263 lines (194 loc) · 10.3 KB

Keras Benchmarks

Table of Contents

  1. Overview
  2. Library Versions
  3. CNN Benchmarks
    1. CNN Benchmark Results
  4. RNN Benchmarks (Experimental)
  5. Setup
  6. How to Run CNN Benchmarks
  7. How to Run RNN Benchmarks
  8. References

Overview

This Benchmark module provides an easy to use scripts for benchmarking various Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) Keras models. You can use these scripts to generate benchmarks on a CPU, one GPU or multi-GPU instances. Apache MXNet and TensorFlow backends are supported for generating the benchmark results.

CREDITS: This benchmark module borrows and extends the benchmark utility from TensorFlow Keras benchmarks.

Library Versions

NOTE:
    The below benchmarks use native pip packages provided by the frameworks without any optimized compile builds.
Framework Version Installation
Keras 2.1.6 pip install keras-mxnet
MXNet (CPU) 1.2 pip install mxnet-mkl
MXNet (GPU) 1.2 pip install mxnet-cu90
TensorFlow (CPU) 1.8 pip install tensorflow
TensorFlow (GPU) 1.8 pip install tensorflow-gpu
CUDA 9.0
cuDNN 7.0.5

CNN Benchmarks

Currently, this utility helps in benchmarking the following CNN networks:

  1. ResNet56

Currently, this utility helps in benchmarking on the following datasets:

  1. CIFAR-10
  2. ImageNet
  3. Synthetic data
NOTE:
    1. For CIFAR10 and synthetic data, the benchmark scripts will download and generate the required data respectively.
    2. For ImageNet data, you are expected to download the data - http://image-net.org/download
    3. You can benchmark with a different number of layers in ResNet.

CNN Benchmark Results

ResNet50-ImageNet

Instance Type GPUs Batch Size Keras-MXNet (img/sec) Keras-TensorFlow (img/sec)
P3.8X Large 1 32 135 52
P3.8X Large 4 128 536 162
P3.16X Large 8 256 722 211

ResNet50-Synthetic Data

Instance Type GPUs Batch Size Keras-MXNet (img/sec) Keras-TensorFlow (img/sec)
C5.18X Large 0 32 13 4
P3.8X Large 1 32 194 184
P3.8X Large 4 128 764 393
P3.16X Large 8 256 1068 261

ResNet50-CIFAR10

Instance Type GPUs Batch Size Keras-MXNet (img/sec) Keras-TensorFlow (img/sec)
C5.18X Large 0 32 87 59
P3.8X Large 1 32 831 509
P3.8X Large 4 128 1783 699
P3.16X Large 8 256 1680 435

You can see more benchmark experiments with different instance types, batch_size and other parameters in detailed CNN results document.

NOTE:
    1. Image_data_format for MXNet backend - 'channels_first'
    2. Image_data_format for TensorFlow backend - 'channels_last'
    3. C5 instance details - https://aws.amazon.com/ec2/instance-types/c5/
    4. P3 instance details (Volta GPU) - https://aws.amazon.com/ec2/instance-types/p3/

RNN Benchmarks (Experimental)

RNN support in Keras-MXNet is experimental with few rough edges on CPU training performance and no support for variable length sequence.

RNN Benchmark results will be soon added in the future releases. However, you can use this benchmark utility for benchmarking the following RNN networks:

  1. LSTM Text Generation

Currently, this utility helps in benchmarking on the following datasets:

  1. Nietzsche
  2. WikiText-2
  3. Synthetic data

Setup

  1. Install Keras-MXNet following the installation guide.
  2. You need to install Apache MXNet and/or TensorFlow for running the benchmarks on the respective backend. Install the correct version of the backend based on your instance type (CPU/GPU).
  3. Download this awslabs/keras-apache-mxnet repository that contains all the benchmarking utilities and scripts.
    # Install Keras-MXNet
    $ pip install keras-mxnet
    
    # Install the backend - MXNet and/or TensorFlow
    # For MXNet 
    $ pip install mxnet-mkl # CPU
    $ pip install mxnet-cu90 # GPU
    
    # For TensorFlow
    $ pip install tensorflow # CPU
    $ pip install tensorflow-gpu # GPU
    
    # Download the source code for benchmarking
    $ git clone https://github.com/awslabs/keras-apache-mxnet
    $ cd keras-apache-mxnet/benchmark/scripts

How to Run CNN Benchmarks

ResNet50-ImageNet

Update the ~/.keras/keras.json to set the backend and image_data_format.

For TensorFlow backend benchmarks, set backend: tensorflow and image_data_format: channels_last. For MXNet backend benchmarks, set backend: mxnet and image_data_format: channels_first.

    $ python benchmark_resnet.py --dataset imagenet --version 1 --layers 56 --gpus 4 --epoch 20 --train_mode train_on_batch --data_path home/ubuntu/imagenet/train/

  • version: can be 1 or 2 for ResNetv1 and ResNetv2 respectively.
  • layers: Number of layers in ResNet
  • gpus: Number of GPUs to be used. 0 to run on CPU
  • train_mode: Since imagenet is a large dataset, you can choose 'train_on_batch' or 'fit_generator' to feed the data. We recommend 'train_on_batch'.
  • data_path: Path where you have downloaded the ImageNet data.

ResNet50-CIFAR10

Update the ~/.keras/keras.json to set the backend and image_data_format.

For TensorFlow backend benchmarks, set backend: tensorflow and image_data_format: channels_last. For MXNet backend benchmarks, set backend: mxnet and image_data_format: channels_first.

    $ python benchmark_resnet.py --dataset cifar10 --version 1 --layers 56 --gpus 4 --epoch 20

Set number of gpus, epochs based on your experiments.

ResNet50-Synthetic

We have a utility shell script that you can run for benchmarking on the synthetic data.

For MXNet backend benchmarks:

    $ sh run_mxnet_backend.sh cpu_config resnet50 False 20 # For CPU Benchmarks
    $ sh run_mxnet_backend.sh gpu_config resnet50 False 20 # For 1 GPU Benchmarks
    $ sh run_mxnet_backend.sh 4_gpu_config resnet50 False 20 # For 4 GPU Benchmarks
    $ sh run_mxnet_backend.sh 8_gpu_config resnet50 False 20 # For 8 GPU Benchmarks

For TensorFlow backend benchmarks:

    $ sh run_tf_backend.sh cpu_config resnet50 False 20 # For CPU Benchmarks
    $ sh run_tf_backend.sh gpu_config resnet50 False 20 # For 1 GPU Benchmarks
    $ sh run_tf_backend.sh 4_gpu_config resnet50 False 20 # For 4 GPU Benchmarks
    $ sh run_tf_backend.sh 8_gpu_config resnet50 False 20 # For 8 GPU Benchmarks

The last parameter, 20, in the command is the number of epoch.

How to Run RNN Benchmarks

LSTM-Nietzsche

You can use the utility shell script to run the RNN benchmark on the Nietzsche dataset.

For MXNet backend benchmarks:

    $ sh run_mxnet_backend.sh cpu_config lstm_nietzsche False 10 # For CPU Benchmarks
    $ sh run_mxnet_backend.sh gpu_config lstm_nietzsche False 10 # For 1 GPU Benchmarks
    $ sh run_mxnet_backend.sh 4_gpu_config lstm_nietzsche False 10 # For 4 GPU Benchmarks
    $ sh run_mxnet_backend.sh 8_gpu_config lstm_nietzsche False 10 # For 8 GPU Benchmarks

For TensorFlow backend benchmarks:

    $ sh run_tf_backend.sh cpu_config lstm_nietzsche False 10 # For CPU Benchmarks
    $ sh run_tf_backend.sh gpu_config lstm_nietzsche False 10 # For 1 GPU Benchmarks
    $ sh run_tf_backend.sh 4_gpu_config lstm_nietzsche False 10 # For 4 GPU Benchmarks
    $ sh run_tf_backend.sh 8_gpu_config lstm_nietzsche False 10 # For 8 GPU Benchmarks

LSTM-WikiText2

You can use the utility shell script to run the RNN benchmark on the WikiText2 dataset.

For MXNet backend benchmarks:

    $ sh run_mxnet_backend.sh cpu_config lstm_wikitext2 False 10 # For CPU Benchmarks
    $ sh run_mxnet_backend.sh gpu_config lstm_wikitext2 False 10 # For 1 GPU Benchmarks
    $ sh run_mxnet_backend.sh 4_gpu_config lstm_wikitext2 False 10 # For 4 GPU Benchmarks
    $ sh run_mxnet_backend.sh 8_gpu_config lstm_wikitext2 False 10 # For 8 GPU Benchmarks

For TensorFlow backend benchmarks:

    $ sh run_tf_backend.sh cpu_config lstm_wikitext2 False 10 # For CPU Benchmarks
    $ sh run_tf_backend.sh gpu_config lstm_wikitext2 False 10 # For 1 GPU Benchmarks
    $ sh run_tf_backend.sh 4_gpu_config lstm_wikitext2 False 10 # For 4 GPU Benchmarks
    $ sh run_tf_backend.sh 8_gpu_config lstm_wikitext2 False 10 # For 8 GPU Benchmarks

Synthetic Data

You can use the utility shell script to run the RNN benchmark on the Synthetic dataset.

For MXNet backend benchmarks:

    $ sh run_mxnet_backend.sh cpu_config lstm_synthetic False 10 # For CPU Benchmarks
    $ sh run_mxnet_backend.sh gpu_config lstm_synthetic False 10 # For 1 GPU Benchmarks
    $ sh run_mxnet_backend.sh 4_gpu_config lstm_synthetic False 10 # For 4 GPU Benchmarks
    $ sh run_mxnet_backend.sh 8_gpu_config lstm_synthetic False 10 # For 8 GPU Benchmarks

For TensorFlow backend benchmarks:

    $ sh run_tf_backend.sh cpu_config lstm_synthetic False 10 # For CPU Benchmarks
    $ sh run_tf_backend.sh gpu_config lstm_synthetic False 10 # For 1 GPU Benchmarks
    $ sh run_tf_backend.sh 4_gpu_config lstm_synthetic False 10 # For 4 GPU Benchmarks
    $ sh run_tf_backend.sh 8_gpu_config lstm_synthetic False 10 # For 8 GPU Benchmarks

References