Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

train all models with pmc article/det compressed embeddings #36

Open
source-data opened this issue Jul 31, 2019 · 2 comments
Open

train all models with pmc article/det compressed embeddings #36

source-data opened this issue Jul 31, 2019 · 2 comments

Comments

@source-data
Copy link
Collaborator

No description provided.

@source-data source-data changed the title train all models with pmc shuffle embeddings train all models with pmc article/det embeddings Aug 3, 2019
@source-data source-data changed the title train all models with pmc article/det embeddings train all models with pmc article/det compressed embeddings Aug 23, 2019
@source-data
Copy link
Collaborator Author

Model: 5X_L1200_anonym_not_reporter_article_embeddings_128_intervention_assayed_2019-08-22-16-25.zip

@source-data
Copy link
Collaborator Author

Benchmarking results:

========================================================

Data: /workspace/py-smtag/resources/data4th/5X_L1200_article_embeddings_128

Model: 5X_L1200_article_embeddings_128_small_molecule_geneprod_subcellular_cell_tissue_organism_assay_2019-08-23-17-46.zip

Global stats:

precision = 0.8090225458145142                                                                                                                          
recall = 0.78                                                                                                                                           
f1 = 0.79                                                                                                                                               

Feature: 'small_molecule'

precision = 0.72
recall = 0.72
f1 = 0.72

Feature: 'geneprod'

precision = 0.84
recall = 0.88
f1 = 0.86

Feature: 'subcellular'

precision = 0.72
recall = 0.78
f1 = 0.75

Feature: 'cell'

precision = 0.83
recall = 0.78
f1 = 0.81

Feature: 'tissue'

precision = 0.77
recall = 0.67
f1 = 0.72

Feature: 'organism'

precision = 0.83
recall = 0.67
f1 = 0.74

Feature: 'assay'

precision = 0.77
recall = 0.70
f1 = 0.73

Feature: 'untagged'

precision = 0.99
recall = 0.99
f1 = 0.99

========================================================

Data: /workspace/py-smtag/resources/data4th/5X_L1200_anonym_not_reporter_article_embeddings_128

Model: 5X_L1200_anonym_not_reporter_article_embeddings_128_intervention_assayed_2019-08-22-16-25.zip

Global stats:

precision = 0.8826258778572083
recall = 0.88
f1 = 0.88

Feature: 'intervention'

precision = 0.82
recall = 0.76
f1 = 0.79

Feature: 'assayed'

precision = 0.83
recall = 0.87
f1 = 0.85

Feature: 'untagged'

precision = 1.00
recall = 1.00
f1 = 1.00

========================================================

Data: /workspace/py-smtag/resources/data4th/5X_L1200_molecule_anonym_article_embeddings_128

Model: 5X_L1200_molecule_anonym_article_embeddings_128_intervention_assayed_2019-08-28-23-33_epoch_51.zip

Global stats:

precision = 0.8728659749031067
recall = 0.90
f1 = 0.88

Feature: 'intervention'

precision = 0.95
recall = 0.92
f1 = 0.94

Feature: 'assayed'

precision = 0.67
recall = 0.78
f1 = 0.72

Feature: 'untagged'

precision = 1.00
recall = 1.00
f1 = 1.00

========================================================

Data: /workspace/py-smtag/resources/data4th/5X_L1200_article_embeddings_128

Model: 5X_L1200_article_embeddings_128_reporter_2019-08-28-00-08_epoch_23_.zip

Global stats:

precision = 0.9299678206443787
recall = 0.88
f1 = 0.90

Feature: 'reporter'

precision = 0.86
recall = 0.76
f1 = 0.81

Feature: 'untagged'

precision = 1.00
recall = 1.00
f1 = 1.00

========================================================

Data: /workspace/py-smtag/resources/data4th/5X_L1200_emboj_2012_no_viz

Model: 5X_L1200_emboj_2012_no_viz_panel_stop_2019-08-29-08-31.zip

Global stats:

precision = 0.9664154648780823
recall = 1.00
f1 = 0.98

Feature: 'panel_stop'

precision = 0.93
recall = 0.99
f1 = 0.96

Feature: 'untagged'

precision = 1.00
recall = 1.00
f1 = 1.00

========================================================

Data: /workspace/py-smtag/resources/data4th/10X_L1200_disease_articke_embeddings_128 + /workspace/py-smtag/resources/data4th/5X_L1200_article_embeddings_128

Model: 10X_L1200_disease_articke_embeddings_128-5X_L1200_article_embeddings_128_disease_2019-08-25-21-47.zip

Global stats:

precision = 0.9544399380683899
recall = 0.89
f1 = 0.92

Feature: 'disease'

precision = 0.91
recall = 0.79
f1 = 0.85

Feature: 'untagged'

precision = 1.00
recall = 1.00
f1 = 1.00

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

0 participants