-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgeod-addenda.html
484 lines (483 loc) · 18.4 KB
/
geod-addenda.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>
Addenda and errata for papers on geodesics
</title>
<meta name="description" content="Geodesics on an ellipsoid,
Addenda and Errata" />
<meta name="author" content="Charles F. F. Karney" />
<link rel="stylesheet" type="text/css" href="default.css">
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<script type="text/javascript" async
src="https://geographiclib.sourceforge.io/MathJax-2.7.2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body topmargin=10 leftmargin=10>
<a href="geod.html">Back to resource page for geodesics.</a>
<h3>
<a name="geodalg-addenda">Addenda</a> for C. F. F. Karney,
<a href="geod.html">
<i>Algorithms for Geodesics</i></a>,
<a href="https://doi.org/10.1007/s00190-012-0578-z">
J. Geodesy <b>87</b>(1), 43–55 (Jan. 2013)</a>;<br>
DOI: <a href="https://doi.org/10.1007/s00190-012-0578-z">
10.1007/s00190-012-0578-z</a>.
</h3>
<ol>
<li>
Implementations of the geodesic routines are now available in C,
Fortran, Java, JavaScript, Python, and Matlab (in addition to
C++). For details see
<a href="https://geographiclib.sourceforge.io/html/other.html">
this link</a>.
<li>
Care needs to be taken when solving the inverse problem for a
non-equatorial geodesic when both end points on the equator. In
Table 5, the quadrants for \(\sigma_1\) and \(\omega_1\) must be
determined taking \(\sin\sigma_1\) and \(\sin\omega_1\) to be
negative; this is consistent with the ordering \(\phi_1 \le 0\).
<li>
The 6th-order series given in the paper provide solutions for
the geodesic problem which are accurate to round off for
\(\left|f\right| \lt 0.01\). The least accurate of the series
is the reverted series for \(\sigma\) in terms of \(\tau\),
Eqs. (20) and (21), which is used only in solving the direct
problem. The accuracy can be improved by using these equations
to give an initial approximation for \(\sigma\) which is
following by one step of Newton's method applied to Eq. (7),
with \(dI_1(\sigma)/d\sigma = \sqrt{1 + k^2 \sin^2\sigma}\).
With this change (which need only be applied for
\(\left|f\right| \gt 0.01\)), the 6th-order series are accurate
to round-off for \(\left|f\right| \lt 0.02\).
<li>
Equation (63) give expansions for the area integral using
\(e'^2\) and \(k^2\) as small parameters. Unfortunately the
resulting series diverges for \(e' \gt 1\) or \(b/a \lt
1/\sqrt2\). This problem is remedied by expanding instead in
terms of \(n\) and \(\epsilon\). Thus Eq. (63) becomes
\[
\begin{align}
C_{40} &\textstyle= \bigl(\frac{2}{3} - \frac{4}{15} n + \frac{8}{105} n^2 +
\frac{4}{315} n^3 + \frac{16}{3465} n^4 + \frac{20}{9009} n^5\bigr)\\
&\textstyle\quad{}- \bigl(\frac{1}{5} - \frac{16}{35} n +
\frac{32}{105} n^2 - \frac{16}{385} n^3 -
\frac{64}{15015} n^4\bigr) \epsilon\\
&\textstyle\quad{}- \bigl(\frac{2}{105} + \frac{32}{315} n -
\frac{1088}{3465} n^2 + \frac{1184}{5005} n^3\bigr) \epsilon^2\\
&\textstyle\quad{}+ \bigl(\frac{11}{315} - \frac{368}{3465} n -
\frac{32}{6435} n^2\bigr) \epsilon^3\\
&\textstyle\quad{}+ \bigl(\frac{4}{1155} +
\frac{1088}{45045} n\bigr) \epsilon^4
+ \frac{97}{15015} \epsilon^5 + \ldots,\\
C_{41} &\textstyle= \bigl(\frac{1}{45} - \frac{16}{315} n +
\frac{32}{945} n^2 - \frac{16}{3465} n^3 -
\frac{64}{135135} n^4\bigr) \epsilon\\
&\textstyle\quad{}- \bigl(\frac{2}{105} - \frac{64}{945} n +
\frac{128}{1485} n^2 - \frac{1984}{45045} n^3\bigr) \epsilon^2\\
&\textstyle\quad{}- \bigl(\frac{1}{105} - \frac{16}{2079} n -
\frac{5792}{135135} n^2\bigr) \epsilon^3\\
&\textstyle\quad{}+ \bigl(\frac{4}{1155} -
\frac{2944}{135135} n\bigr) \epsilon^4
+ \frac{1}{9009} \epsilon^5 + \ldots,\\
C_{42} &\textstyle= \bigl(\frac{4}{525} - \frac{32}{1575} n +
\frac{64}{3465} n^2 - \frac{32}{5005} n^3\bigr) \epsilon^2\\
&\textstyle\quad{}- \bigl(\frac{8}{1575} - \frac{128}{5775} n +
\frac{256}{6825} n^2\bigr) \epsilon^3\\
&\textstyle\quad{}- \bigl(\frac{8}{1925} -
\frac{1856}{225225} n\bigr) \epsilon^4
+ \frac{8}{10725} \epsilon^5 + \ldots,\\
C_{43} &\textstyle= \bigl(\frac{8}{2205} - \frac{256}{24255} n +
\frac{512}{45045} n^2\bigr) \epsilon^3\\
&\textstyle\quad{}- \bigl(\frac{16}{8085} -
\frac{1024}{105105} n\bigr) \epsilon^4
- \frac{136}{63063} \epsilon^5 + \ldots,\\
C_{44} &\textstyle= \bigl(\frac{64}{31185} -
\frac{512}{81081} n\bigr) \epsilon^4
- \frac{128}{135135} \epsilon^5 + \ldots,\\
C_{45} &\textstyle= \frac{128}{99099} \epsilon^5 + \ldots.
\end{align}
\]
<li>
In some applications, it is necessary to keep track of how many
times a geodesic encircles the earth, i.e., to determine the
value of \(\lambda_{12}\) without reducing it to some canonical
range. The geodesic classes offer this option through the
Geodesic::LONG_UNROLL mask bit. In the case of the inverse
problem, we are interested in the shortest geodesic and thus
\(\lambda_{12}\in(-\pi,\pi]\) (the geodesic between points on
opposite meridians is taken to be east-going). When solving the
direct geodesic problem, \(\sigma_{12}\) is found in terms of
the length of the geodesic, \(\omega\) and \(\sigma\) pass from
one quadrant to the next at the same time, and they are related
by \(\tan\omega = \sin\alpha_0 \tan\sigma\). The "unrolled"
value of \(\lambda_{12}\) is then given by
\[
\begin{align}
\omega_{12} &= E\biggl[\sigma_{12}
- \biggl(\tan^{-1}\frac{\sin\sigma_2}{\cos\sigma_2} -
\tan^{-1}\frac{\sin\sigma_1}{\cos\sigma_1}\biggr)\\
&\quad\qquad{}+ \biggl(\tan^{-1}\frac{E\sin\omega_2}{\cos\omega_2} -
\tan^{-1}\frac{E\sin\omega_1}{\cos\omega_1}\biggr)\biggr],\\
\lambda_{12} &= \omega_{12} - f\sin\alpha_0
\bigl(I_3(\sigma_2)-I_3(\sigma_1)\bigr),
\end{align}
\]
where \(E=\pm1\) is the sign of \(\sin\alpha_0\) or \(+1\) if
\(\sin\alpha_0 = 0\).
<li>
The starting guesses for Newton's method given in Sec. 5 are not
very good for highly eccentric ellipsoids. It's possible to
modify Newton's method so that it converges even for poor
initial guesses. The goal is to find the root of
\[
f(\alpha_1) \equiv \lambda_{12}(\alpha_1) - \lambda_{12} = 0,
\]
where \(\lambda_{12}(\alpha_1)\) is the solution of the hybrid
problem. There is exactly one root to this equation in the
interval \(\alpha_1 \in (0,\pi)\) and its derivative
\(f'(\alpha_1)\) is positive at the root. During the course of
the iteration, a range \((\alpha_{1a}, \alpha_{1b})\) is
maintained which brackets the root and with each evaluation of
\(f(\alpha_1)\) the range is shrunk, if possible. Newton's
method is restarted whenever the derivative of \(f(\alpha_1)\)
is negative (because the new value of \(\alpha_1\) is then
further from the solution) or if the new estimate of
\(\alpha_1\) lies outside \((0,\pi)\); in this case, the new
starting guess is taken to be \((\alpha_{1a} + \alpha_{1b}) /
2\).
<li>
The series for \(A_2\) converges slightly faster it is
multiplied by \(1+\epsilon\), instead of divided by
\(1-\epsilon\). The resulting series is
\[
\textstyle
A_2 = (1 + \epsilon)^{-1} \bigl(
1 - \frac{3}{4}\epsilon^2 - \frac{7}{64}\epsilon^4
- \frac{11}{256}\epsilon^6 - \frac{375}{16384}\epsilon^8 + \ldots
\bigr).
\]
<li>
In order to obtain accurate solutions for ellipsoids of
arbitrary eccentricity, it is necessary to replace the series
expansions for the integrals (which are valid only if \(f\) is
small) with direct evaluation in terms of elliptic integrals
(which are valid for all \(f\)). The key relations used are
\[
\begin{align}
\frac sb &= E(\sigma, ik), \\
\lambda &= \chi
- \frac{e'^2}{\sqrt{1+e'^2}}\sin\alpha_0 H(\sigma, -e'^2, ik), \\
J(\sigma) &= k^2 D(\sigma, ik),
\end{align}
\]
where
\[
\begin{align}
\tan\chi &= \sqrt{\frac{1+e'^2}{1+k^2\sin^2\sigma}}\tan\omega, \\
H(\phi, \alpha^2, k)
&=
\frac1{\alpha^2} F(\phi, k) +
\biggl(1 - \frac1{\alpha^2}\biggr) \Pi(\phi, \alpha^2, k),
\end{align}
\]
and \(F(\phi, k)\), \(E(\phi, k)\), \(D(\phi, k)\), and
\(\Pi(\phi, \alpha^2, k)\), are incomplete elliptic integrals
(see <a href="http://dlmf.nist.gov/19.2.ii">
http://dlmf.nist.gov/19.2.ii</a>).
<li>
Google Books does not consistently provide access to the full
text. If you encounter this situation, you can download the
pdf files listed here:
<ul>
<li>
Gauss (1828),
Google id:
<a href="https://books.google.com/books?id=a1wTJR3kHwUC">
a1wTJR3kHwUC</a>,
pdf:
<a href="https://geographiclib.sourceforge.io/geodesic-papers/gauss28-en.pdf">
gauss28-en.pdf</a>.
<li>
Helmert (1880),
Google id:
<a href="https://books.google.com/books?id=qt2CAAAAIAAJ">
qt2CAAAAIAAJ</a>,
pdf:
<a href="https://geographiclib.sourceforge.io/geodesic-papers/helmert80.pdf">
helmert80.pdf</a>.
<li>
Jacobi (1891),
Google id:
<a href="https://books.google.com/books?id=_09tAAAAMAAJ">
_09tAAAAMAAJ</a>,
pdf:
<a href="https://geographiclib.sourceforge.io/geodesic-papers/jacobi-V7.pdf">
jacobi-V7.pdf</a>.
</ul>
</ol>
Items 3–8 represent changes since the publication of the
paper. Changes 3–7 have been implemented in the
<a href="index.html"> GeographicLib</a> classes
<a href="html/classGeographicLib_1_1Geodesic.html"> Geodesic</a> and
<a href="html/classGeographicLib_1_1GeodesicLine.html">
GeodesicLine</a>
in GeographicLib versions 1.27, 1.26, 1.39 (fixed in 1.43), 1.25,
and 1.44, respectively. Change 8 (the evaluation of the integrals
in terms of elliptic integrals) is implemented in
the <a href="index.html">
GeographicLib</a>
classes
<a href="html/classGeographicLib_1_1GeodesicExact.html">
GeodesicExact</a> and
<a href="html/classGeographicLib_1_1GeodesicLineExact.html">
GeodesicLineExact</a> which were added to GeographicLib 1.25.
For geodetic applications,
<a href="html/classGeographicLib_1_1Geodesic.html">
Geodesic</a> and
<a href="html/classGeographicLib_1_1GeodesicLine.html">
GeodesicLine</a>
are preferred, because they are about 2–3 times faster and the
round-off errors are about 2–3 times smaller.
<p>
Some notes on geodesics on a <i>triaxial</i> ellipsoid are given
in <a href="html/triaxial.html"> Geodesics on a triaxial
ellipsoid</a>. This examines the solution to this problem found
by Jacobi in 1839.
<h3>
<a name="geodalg-errata">Errata</a> for C. F. F. Karney,
<a href="geod.html">
<i>Algorithms for Geodesics</i></a>,
<a href="https://arxiv.org/abs/1109.4448v2">arXiv:1109.4448v2</a>
(2012-03-28).
</h3>
<p>
These errata apply to
the <a href="https://arxiv.org/abs/1109.4448v2"> preprint</a>
only:
<ul>
<li>
p. 1, col. 2, last 2 lines: replace “present accuracy
and timing data are discussed” by “accuracy and
timing data are presented”.
<li>
p. 6, col. 1, last para.: replace “Eq. (6),
solve” by “Eq. (6). Solve”.
<li>
p. 10, col. 1, line 10: replace “using with
high-precision” by “using high-precision”.
<li>
p. 10, col. 1, 2nd para. of Sec. 8: replace “parallel
to the geodesic <i>AB</i> at <i>A</i>” by
“parallel to the geodesic <i>AB</i>
at <i>A</i>' ”.
<li>
p. 10, col. 2, before Eq. (67): replace “the curvature
is given by differentiating Eq. (37) with respect to φ
and dividing by” by “∇<i>K</i> is found by
differentiating Eq. (37) with respect to φ and dividing
the result by”.
</ul>
</p>
<h3>
<a name="geod-errata">Errata</a> for C. F. F. Karney,
<a href="geod.html">
<i>Geodesics on an ellipsoid of revolution</i></a>
<a href="https://arxiv.org/abs/1102.1215v1">arXiv:1102.1215v1</a>
(2011-02-07).
</h3>
<p>Addenda:
<ul>
<li>
Google Books does not consistently provide access to the full
text. If you encounter this situation, you can download the
pdf files listed here:
<ul>
<li>
Christoffel (1910),
Google id:
<a href="https://books.google.com/books?id=9W9tAAAAMAAJ">
9W9tAAAAMAAJ</a>,
pdf:
<a href="https://geographiclib.sourceforge.io/geodesic-papers/christoffel-V1.pdf">
christoffel-V1.pdf</a>.
<li>
Darboux (1894),
Google id:
<a href="https://books.google.com/books?id=hGMSAAAAIAAJ">
hGMSAAAAIAAJ</a>,
pdf:
<a href="https://geographiclib.sourceforge.io/geodesic-papers/darboux94.pdf">
darboux94.pdf</a>.
<li>
Eisenhart (1909),
Google id:
<a href="https://books.google.com/books?id=hkENAAAAYAAJ">
hkENAAAAYAAJ</a>,
pdf:
<a href="https://geographiclib.sourceforge.io/geodesic-papers/eisenhart09.pdf">
eisenhart09.pdf</a>.
<li>
Forsyth (1896),
Google id:
<a href="https://books.google.com/books?id=YsAKAAAAIAAJ">
YsAKAAAAIAAJ</a>,
pdf:
<a href="https://geographiclib.sourceforge.io/geodesic-papers/messmath-V25.pdf">
messmath-V25.pdf</a>.
<li>
Gauss (1902),
Google id:
<a href="https://books.google.com/books?id=a1wTJR3kHwUC">
a1wTJR3kHwUC</a>,
pdf:
<a href="https://geographiclib.sourceforge.io/geodesic-papers/gauss28-en.pdf">
gauss28-en.pdf</a>.
<li>
Gauss (1903),
Google id:
<a href="https://books.google.com/books?id=ICwPAAAAIAAJ">
ICwPAAAAIAAJ</a>,
pdf:
<a href="https://geographiclib.sourceforge.io/geodesic-papers/gauss-V9.pdf">
gauss-V9.pdf</a>.
<li>
Helmert (1880),
Google id:
<a href="https://books.google.com/books?id=qt2CAAAAIAAJ">
qt2CAAAAIAAJ</a>,
pdf:
<a href="https://geographiclib.sourceforge.io/geodesic-papers/helmert80.pdf">
helmert80.pdf</a>.
<li>
Jacobi (1891),
Google id:
<a href="https://books.google.com/books?id=_09tAAAAMAAJ">
_09tAAAAMAAJ</a>,
pdf:
<a href="https://geographiclib.sourceforge.io/geodesic-papers/jacobi-V7.pdf">
jacobi-V7.pdf</a>.
</ul>
</ul>
<p>Errata:
<ul>
<li>
Sec. 1, para. 1, line 7: replace “taking” by
“taken”.
<li>
Sec. 1, last para., line 4: replace “concerned
the” by “concerned with the”.
<li>
p. 5, Eq. (44): replace “2<i>l</i>,σ” by
“2<i>l</i>σ,”.
<li>
Sec. 5, para. 1, line 1: replace “simply matter”
by “simply a matter”.
<li>
p. 5, col. 2, para. 1, 2nd last line: replace “gave him
with a” by “gave him a”.
<li>
p. 6, col. 2, following Eq. (53): replace “as noted as
the end” by “as noted at the end”.
<li>
p. 8, col. 1, para. 2, line 3: replace “the pair the
pair” by “the pair”.
<li>
Fig. 4, 2nd line of caption: delete “close”.
<li>
p. 9, col. 1, 2nd last line: replace “loose” by
“lose”.
<li>
p. 9, col. 2, Eq. (64): Helmert (1880), Eq. (7.3.7), also
suggested using this equation to solve for
α<sub>1</sub>.
<li>
Sec. 7, 2nd last para., last line: replace “Helmert
(1880, §9.2)” by “Helmert (1880,
§7.2)”.
<li>
Sec. 7: remove the last sentence; there's an updated version
of Rapp (1993) available
at <a href="http://hdl.handle.net/1811/24409">
http://hdl.handle.net/1811/24409</a>.
<li>
p. 12, col. 1, Eq. (73): this equation may be obtained from
Helmert (1880), Eq. (6.9.8b).
<li>
p. 13, col. 1, para. 2, line 3: replace
“φ<sub>1</sub> + φ<sub>1</sub> = 0” by
“φ<sub>1</sub> + φ<sub>2</sub> = 0”.
<li>
Sec. 11, last para., line 1: replace “solution” by
“solutions”.
<li>
Sec. 11, last line: replace “slowly that” by
“slowly than”.
<li>
p. 19, col. 2, line 6: replace “Thus leads to” by
“This leads to”.
<li>
p. 20, col. 2, 4 lines before 2nd eq.: replace
“solving” by “solved”.
<li>
Sec. 14, line 4: replace “these rule” by
“these rules”.
<li>
p. 20, col. 2, line 5: replace “of of” by
“of”.
<li>
p. 21, col. 2, 9th last line: replace “the
point with is a distance” by “the point which is a
distance”.
<li>
p. 21, col. 2, 3rd last line: replace “it can also be
solving” by “it can also be solved”.
<li>
p. 23, col. 1, para. 2, line 3: replace
“2π<i>c</i><sup>2</sup>” by
“2π<i>R<sub>q</sub></i><sup>2</sup>”.
<li>
p. 23, col. 1, para. 2, 4th last line: replace
“the Japan” by “Japan”.
<li>
p. 23, col. 2, last line: replace “has has” by
“has”.
<li>
App. B, line 7: replace “can therefore by used” by
“can therefore be used”.
<li>
p. 25, col. 1, 2nd last line: the link to Olver et al.,
Sec. 1.11(iii), is incorrect; it should be
<a href="http://dlmf.nist.gov/1.11.iii">
http://dlmf.nist.gov/1.11.iii</a>.
<li>
p. 25, col. 2, last line: replace “<i>x</i>
≤ <i>e</i><sup>2</sup>” by “|<i>x</i>|
≤ <i>e</i><sup>2</sup>”.
<li>
p. 26, col. 1, line 2 following Eq. (C1): replace
“<i>AFGB</i>” by “<i>AFHB</i>”.
<li>
p. 26, col. 2, following 3rd eq.: insert comma between the
inline equations for <i>b</i> and γ.
<li>
p. 27, col. 2, Eq. (D4): replace
“<i>c</i><sup>2</sup>” by
“<i>R<sub>q</sub></i><sup>2</sup>”.
<li>
p. 29, col. 1, refs. Oriani (1806, 1808, 1810): replace
“trigonemetria” by “trigonometria”.
</ul>
</p>
<a href="geod.html">Back to resource page for geodesics.</a>
<hr>
<address>Charles Karney
<a href="mailto:[email protected]"><[email protected]></a>
(2017-09-30)</address>
<br>
<a href="https://geographiclib.sourceforge.io">
GeographicLib home
</a>
</body>
</html>