-
Notifications
You must be signed in to change notification settings - Fork 24
/
chat.cpp
executable file
·1065 lines (939 loc) · 35.3 KB
/
chat.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===----------------------------------------------------------------------===//
//
// Copyright (C) 2023 Sophgo Technologies Inc. All rights reserved.
//
// TPU-MLIR is licensed under the 2-Clause BSD License except for the
// third-party components.
//
//===----------------------------------------------------------------------===//
#include <algorithm>
#include <chrono>
#include <cstdlib>
#include <cstring>
#include <dlfcn.h>
#include <fstream>
#include <getopt.h>
#include <inttypes.h>
#include <iostream>
#include <numeric>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <random>
#include <stdio.h>
#include <vector>
#include "bmruntime_interface.h"
#include "memory.h"
#include "utils.h"
static const float ATTENTION_MASK = -10000.;
typedef uint8_t *(*decrypt_func)(const uint8_t *, uint64_t, uint64_t *);
class Qwen {
public:
void load_bmodel(const std::vector<int> &devices,
const std::string &model_path);
void init_nets();
void init_params();
void init(const std::vector<int> &devid, const std::string &model_path,
bool read_bmodel = true);
void deinit();
void init_decrypt();
void deinit_decrypt();
void free_device();
int forward_first(std::vector<int> &tokens);
void forward_share(std::vector<int> &tokens);
int forward_unshare(std::vector<int> &tokens);
int forward_next();
void save_kvcache();
std::vector<int> generate(std::vector<int> &history_tokens, int EOS);
std::mt19937 sgen;
Qwen();
private:
// d2d
inline void d2d(bm_device_mem_t &dst, bm_device_mem_t &src);
inline void d2d(bm_device_mem_t &dst, bm_device_mem_t &src, size_t offset);
inline void d2d(bm_device_mem_t &dst, bm_device_mem_t &src, size_t offset,
size_t size);
// infernece
std::vector<uint16_t>
load_and_infer_embedding(const std::vector<int> &tokens);
void net_launch(const bm_net_info_t *net, int stage_idx);
void dynamic_net_launch(const bm_net_info_t *net, int token_length,
int stage_idx);
bm_device_mem_t embedding_launch(const bm_net_info_t *net0,
const bm_net_info_t *net1,
const std::vector<int> &tokens);
bm_device_mem_t lm_launch(const bm_net_info_t *net,
const bm_device_mem_t &out_mem, size_t offset,
size_t size);
// tensors
void make_in_tensors(bool read_bmodel);
void free_in_tensors();
// sample
void head_launch(const bm_net_info_t *net, bm_device_mem_t &logits_mem,
int stage_idx);
int greedy_search(const bm_net_info_t *net, bm_device_mem_t &logits_mem);
int penalty_sample(const bm_net_info_t *net, bm_device_mem_t &logits_mem,
std::vector<int> &input_tokens, int &token_length);
// error
void handle_error();
void bmrt_error();
void bmodel_error();
void launch_error();
void ioalone_error();
public:
bool io_alone;
bool is_dynamic;
uint32_t prefill_reuse;
std::vector<int> total_tokens;
std::string lib_path;
std::string embedding_path;
int status_code;
int stage_idx;
// model
int hidden_bytes;
int kv_bytes;
int share_length;
int unshare_length;
int total_length;
int unshare_flag;
int SEQLEN;
int NUM_LAYERS;
int MAX_SHARE_LENGTH;
int MAX_UNSHARE_LENGTH;
int BATCH_SIZE;
// generation
float temperature;
float top_p;
float repeat_penalty;
int repeat_last_n;
int max_new_tokens;
std::string generation_mode;
private:
std::vector<bm_handle_t> handles;
bm_handle_t bm_handle;
void *p_bmrt;
std::vector<const bm_net_info_t *> net_blocks;
std::vector<const bm_net_info_t *> net_blocks_unshare;
std::vector<const bm_net_info_t *> net_blocks_cache;
const bm_net_info_t *net_embed;
const bm_net_info_t *net_embed_unshare;
const bm_net_info_t *net_embed_cache;
const bm_net_info_t *net_lm, *net_greedy_head, *net_penalty_sample_head;
std::vector<bm_device_mem_t> past_key;
std::vector<bm_device_mem_t> past_value;
std::vector<bm_device_mem_t> tmp_past_key;
std::vector<bm_device_mem_t> tmp_past_value;
bm_tensor_t inputs_pid, unshare_pid, next_pid;
bm_tensor_t inputs_attention, unshare_attention, next_attention;
uint16_t mask_value;
void *decrypt_handle_; // handle of decrypt lib
decrypt_func decrypt_func_; // decrypt func from lib
};
// init
Qwen::Qwen() {
prefill_reuse = 0;
stage_idx = 0;
status_code = 0;
total_tokens.clear();
// path
lib_path = "";
embedding_path = "";
// length
share_length = 0;
unshare_length = 0;
total_length = 0;
SEQLEN = 0;
NUM_LAYERS = 0;
MAX_SHARE_LENGTH = 0;
MAX_UNSHARE_LENGTH = 0;
//
sgen = std::mt19937(std::random_device()());
bm_handle = nullptr;
p_bmrt = nullptr;
decrypt_handle_ = nullptr;
decrypt_func_ = nullptr;
}
static inline void ASSERT(bool ret) {
if (!ret) {
throw std::runtime_error("runtime error");
}
}
static inline void ASSERT(bool ret, std::string message) {
if (!ret) {
throw std::runtime_error(message);
}
}
void Qwen::d2d(bm_device_mem_t &dst, bm_device_mem_t &src) {
bm_memcpy_d2d_byte(bm_handle, dst, 0, src, 0, bm_mem_get_device_size(dst));
}
void Qwen::d2d(bm_device_mem_t &dst, bm_device_mem_t &src, size_t offset) {
bm_memcpy_d2d_byte(bm_handle, dst, offset, src, 0,
bm_mem_get_device_size(src));
}
void Qwen::d2d(bm_device_mem_t &dst, bm_device_mem_t &src, size_t offset,
size_t size) {
bm_memcpy_d2d_byte(bm_handle, dst, offset, src, 0, size);
}
//===------------------------------------------------------------===//
// Decrypt
//===------------------------------------------------------------===//
void Qwen::init_decrypt() {
// init decrypt
if (lib_path.empty()) {
return;
}
decrypt_handle_ = dlopen(lib_path.c_str(), RTLD_LAZY);
if (!decrypt_handle_) {
std::cout << "Error:"
<< "Decrypt lib [" << lib_path << "] load failed." << std::endl;
throw std::runtime_error("");
}
decrypt_func_ = (decrypt_func)dlsym(decrypt_handle_, "decrypt");
auto error = dlerror();
if (error) {
dlclose(decrypt_handle_);
std::cout << "Error:"
<< "Decrypt lib [" << lib_path << "] symbol find failed."
<< std::endl;
throw std::runtime_error("");
}
return;
}
void Qwen::deinit_decrypt() {
// Step 1: Close the dynamic library handle if it's open.
if (!lib_path.empty() && decrypt_handle_) {
dlclose(decrypt_handle_);
decrypt_handle_ =
nullptr; // Avoid dangling pointer by resetting to nullptr.
}
// Step 2: Reset the function pointer to nullptr.
// No need to free or close anything specific for it.
decrypt_func_ = nullptr;
}
//===------------------------------------------------------------===//
// Exception
//===------------------------------------------------------------===//
// can not create handle
void Qwen::handle_error() {
status_code = -2;
throw std::runtime_error("can not create handle");
}
// can not create bmrt
void Qwen::bmrt_error() {
for (auto h : handles) {
bm_dev_free(h);
}
status_code = -3;
throw std::runtime_error("can not create bmrt");
}
// can not load bmodel
void Qwen::bmodel_error() {
bmrt_destroy(p_bmrt);
for (auto h : handles) {
bm_dev_free(h);
}
status_code = -4;
throw std::runtime_error("can not load bmodel correctly");
}
// can not inference bmodel
void Qwen::launch_error() {
status_code = -5;
throw std::runtime_error("can not inference bmodel");
}
// addr_mode = 0, but must set addr_mode =1
void Qwen::ioalone_error() {
status_code = -6;
throw std::runtime_error(
"addr_mode = 0 in your bmodel, but must set addr_mode = 1");
}
void Qwen::head_launch(const bm_net_info_t *net, bm_device_mem_t &logits_mem,
int stage_idx) {
std::vector<bm_tensor_t> in_tensors(net->input_num);
std::vector<bm_tensor_t> out_tensors(net->output_num);
bmrt_tensor_with_device(&in_tensors[0], logits_mem, net->input_dtypes[0],
net->stages[stage_idx].input_shapes[0]);
for (int i = 1; i < net->input_num; i++) {
bmrt_tensor_with_device(
&in_tensors[i], net->stages[stage_idx].input_mems[i],
net->input_dtypes[i], net->stages[stage_idx].input_shapes[i]);
}
for (int i = 0; i < net->output_num; i++) {
bmrt_tensor_with_device(
&out_tensors[i], net->stages[stage_idx].output_mems[i],
net->output_dtypes[i], net->stages[stage_idx].output_shapes[i]);
}
auto ret = bmrt_launch_tensor_ex(p_bmrt, net->name, in_tensors.data(),
net->input_num, out_tensors.data(),
net->output_num, true, false);
if (!ret) {
launch_error();
} else {
bm_thread_sync(bm_handle);
}
}
void Qwen::net_launch(const bm_net_info_t *net, int stage_idx) {
std::vector<bm_tensor_t> in_tensors(net->input_num);
std::vector<bm_tensor_t> out_tensors(net->output_num);
for (int i = 0; i < net->input_num; i++) {
bmrt_tensor_with_device(
&in_tensors[i], net->stages[stage_idx].input_mems[i],
net->input_dtypes[i], net->stages[stage_idx].input_shapes[i]);
}
for (int i = 0; i < net->output_num; i++) {
bmrt_tensor_with_device(
&out_tensors[i], net->stages[stage_idx].output_mems[i],
net->output_dtypes[i], net->stages[stage_idx].output_shapes[i]);
}
auto ret = bmrt_launch_tensor_ex(p_bmrt, net->name, in_tensors.data(),
net->input_num, out_tensors.data(),
net->output_num, true, false);
if (!ret) {
launch_error();
} else {
bm_thread_sync(bm_handle);
}
}
void Qwen::dynamic_net_launch(const bm_net_info_t *net, int token_length,
int stage_idx) {
std::vector<bm_tensor_t> in_tensors(net->input_num);
std::vector<bm_tensor_t> out_tensors(net->output_num);
for (int i = 0; i < net->input_num; i++) {
bmrt_tensor_with_device(
&in_tensors[i], net->stages[stage_idx].input_mems[i],
net->input_dtypes[i], net->stages[stage_idx].input_shapes[i]);
}
for (int i = 0; i < net->output_num; i++) {
bmrt_tensor_with_device(
&out_tensors[i], net->stages[stage_idx].output_mems[i],
net->output_dtypes[i], net->stages[stage_idx].output_shapes[i]);
}
in_tensors[0].shape.dims[1] = token_length;
in_tensors[1].shape.dims[1] = token_length;
in_tensors[2].shape.dims[2] = token_length;
in_tensors[2].shape.dims[3] = token_length;
out_tensors[0].shape.dims[1] = token_length;
out_tensors[1].shape.dims[1] = token_length;
out_tensors[2].shape.dims[1] = token_length;
auto ret = bmrt_launch_tensor_ex(p_bmrt, net->name, in_tensors.data(),
net->input_num, out_tensors.data(),
net->output_num, true, false);
if (!ret) {
launch_error();
} else {
bm_thread_sync(bm_handle);
}
}
void Qwen::load_bmodel(const std::vector<int> &devices,
const std::string &model_path) {
// request bm_handle
std::cout << "Device [ ";
for (auto d : devices) {
std::cout << d << " ";
}
std::cout << "] loading ....\n";
for (auto d : devices) {
bm_handle_t h;
bm_status_t status = bm_dev_request(&h, d);
if (BM_SUCCESS != status) {
handle_error();
}
handles.push_back(h);
}
bm_handle = handles[0];
// create bmruntime
#ifdef SOC_TARGET
p_bmrt = bmrt_create(handles[0]);
#else
p_bmrt = bmrt_create_ex(handles.data(), handles.size());
#endif
if (NULL == p_bmrt) {
bmrt_error();
}
// load bmodel by file
printf("Model[%s] loading ....\n", model_path.c_str());
bool ret = false;
if (!lib_path.empty()) {
ret = bmrt_load_bmodel_with_decrypt(p_bmrt, model_path.c_str(),
decrypt_func_);
} else {
ret = bmrt_load_bmodel(p_bmrt, model_path.c_str());
}
if (!ret) {
bmodel_error();
}
printf("Done!\n");
}
void Qwen::init_nets() {
// net embed and lm_head
ASSERT(bmrt_get_network_index(p_bmrt, "embedding") != -1 ||
!embedding_path.empty(), "bmodel is lack of embedding or embedding_path is empty");
if (embedding_path.empty()) {
net_embed = bmrt_get_network_info(p_bmrt, "embedding");
net_embed_cache = bmrt_get_network_info(p_bmrt, "embedding_cache");
}
net_lm = bmrt_get_network_info(p_bmrt, "lm_head");
net_greedy_head = bmrt_get_network_info(p_bmrt, "greedy_head");
net_penalty_sample_head =
bmrt_get_network_info(p_bmrt, "penalty_sample_head");
unshare_flag = bmrt_get_network_index(p_bmrt, "block_unshare_0");
auto num_nets = bmrt_get_network_number(p_bmrt);
if (unshare_flag != -1 && embedding_path.empty()) {
net_embed_unshare = bmrt_get_network_info(p_bmrt, "embedding_unshare");
NUM_LAYERS = (num_nets - 5) / 3;
} else if (unshare_flag == -1 && !embedding_path.empty()) {
NUM_LAYERS = (num_nets - 3) / 2;
} else {
NUM_LAYERS = (num_nets - 5) / 2;
}
// net blocks
net_blocks.clear();
net_blocks_unshare.clear();
net_blocks_cache.clear();
for (int i = 0; i < NUM_LAYERS; i++) {
auto block_name = "block_" + std::to_string(i);
auto unshare_name = "block_unshare_" + std::to_string(i);
auto cache_name = "block_cache_" + std::to_string(i);
net_blocks.emplace_back(bmrt_get_network_info(p_bmrt, block_name.c_str()));
if (unshare_flag != -1) {
net_blocks_unshare.emplace_back(
bmrt_get_network_info(p_bmrt, unshare_name.c_str()));
}
net_blocks_cache.emplace_back(
bmrt_get_network_info(p_bmrt, cache_name.c_str()));
}
// convert attention to uint16_t
if (net_blocks[0]->input_dtypes[0] == BM_FLOAT16) {
mask_value = fp32_to_fp16_bits(ATTENTION_MASK);
} else if (net_blocks[0]->input_dtypes[0] == BM_BFLOAT16) {
mask_value = fp32_to_bf16_bits(ATTENTION_MASK);
} else {
std::cerr << "\nError: Invalid attention dtype\n";
std::cerr << "Supported dtype are 'BM_FLOAT16' or 'BM_BFLOAT16'\n";
throw std::runtime_error("Invalid attention dtype");
}
}
void Qwen::init_params() {
// read parameters from bmodel
is_dynamic = net_blocks[0]->is_dynamic;
auto addr_mode = net_blocks_cache[0]->addr_mode;
io_alone = addr_mode == 1;
hidden_bytes = bm_mem_get_device_size(
net_blocks_cache[0]->stages[stage_idx].output_mems[0]);
kv_bytes = bm_mem_get_device_size(
net_blocks_cache[0]->stages[stage_idx].output_mems[1]);
MAX_SHARE_LENGTH = net_blocks[0]->stages[stage_idx].input_shapes[0].dims[1];
if (unshare_flag != -1) {
MAX_UNSHARE_LENGTH =
net_blocks_unshare[0]->stages[stage_idx].input_shapes[0].dims[1];
} else {
MAX_UNSHARE_LENGTH = 0;
}
SEQLEN = net_blocks_cache[0]->stages[stage_idx].input_shapes[3].dims[1];
// resize
past_key.clear();
past_value.clear();
tmp_past_key.clear();
tmp_past_value.clear();
total_tokens.clear();
past_key.resize(NUM_LAYERS);
past_value.resize(NUM_LAYERS);
tmp_past_key.resize(NUM_LAYERS);
tmp_past_value.resize(NUM_LAYERS);
total_tokens.resize(SEQLEN);
// declare tmemory location for kvcache
for (int i = 0; i < NUM_LAYERS; i++) {
ASSERT(net_blocks_cache[i]->addr_mode == 1);
past_key[i] = net_blocks_cache[i]->stages[stage_idx].input_mems[3];
past_value[i] = net_blocks_cache[i]->stages[stage_idx].input_mems[4];
if (prefill_reuse == 1) {
empty(bm_handle, past_key[i]);
empty(bm_handle, past_value[i]);
d2d(past_key[i], tmp_past_key[i], 0, share_length * kv_bytes);
d2d(past_value[i], tmp_past_value[i], 0, share_length * kv_bytes);
}
}
}
void Qwen::make_in_tensors(bool read_bmodel) {
if (!read_bmodel){
free_in_tensors();
}
bool ret = false;
ret = bmrt_tensor_ex(&inputs_pid, p_bmrt, net_blocks[0]->input_loc_devices[1],
net_blocks[0]->input_dtypes[1],
net_blocks[0]->stages[stage_idx].input_shapes[1]);
ASSERT(true == ret);
ret = bmrt_tensor_ex(&inputs_attention, p_bmrt,
net_blocks[0]->input_loc_devices[2],
net_blocks[0]->input_dtypes[2],
net_blocks[0]->stages[stage_idx].input_shapes[2]);
ASSERT(true == ret);
if (unshare_flag != -1) {
ret = bmrt_tensor_ex(
&unshare_pid, p_bmrt, net_blocks_unshare[0]->input_loc_devices[1],
net_blocks_unshare[0]->input_dtypes[1],
net_blocks_unshare[0]->stages[stage_idx].input_shapes[1]);
ASSERT(true == ret);
ret = bmrt_tensor_ex(
&unshare_attention, p_bmrt, net_blocks_unshare[0]->input_loc_devices[2],
net_blocks_unshare[0]->input_dtypes[2],
net_blocks_unshare[0]->stages[stage_idx].input_shapes[2]);
ASSERT(true == ret);
}
ret = bmrt_tensor_ex(&next_pid, p_bmrt,
net_blocks_cache[0]->input_loc_devices[1],
net_blocks_cache[0]->input_dtypes[1],
net_blocks_cache[0]->stages[stage_idx].input_shapes[1]);
ASSERT(true == ret);
ret = bmrt_tensor_ex(&next_attention, p_bmrt,
net_blocks_cache[0]->input_loc_devices[2],
net_blocks_cache[0]->input_dtypes[2],
net_blocks_cache[0]->stages[stage_idx].input_shapes[2]);
ASSERT(true == ret);
}
void Qwen::init(const std::vector<int> &devices, const std::string &model_path,
bool read_bmodel) {
if (read_bmodel) {
// step1 : load bmodel
load_bmodel(devices, model_path);
// step2 : init nets
init_nets();
}
// step3 : init parameters
init_params();
// step4 : make in tensors
make_in_tensors(read_bmodel);
}
void Qwen::free_in_tensors() {
bm_free_device(bm_handle, inputs_pid.device_mem);
bm_free_device(bm_handle, inputs_attention.device_mem);
if (unshare_flag != -1) {
bm_free_device(bm_handle, unshare_pid.device_mem);
bm_free_device(bm_handle, unshare_attention.device_mem);
}
bm_free_device(bm_handle, next_pid.device_mem);
bm_free_device(bm_handle, next_attention.device_mem);
}
void Qwen::free_device() {
free_in_tensors();
bmrt_destroy_without_coeff(p_bmrt);
}
void Qwen::save_kvcache() {
bool ret = false;
for (int i = 0; i < NUM_LAYERS; i++) {
ret = bm_malloc_device_byte(bm_handle, &tmp_past_key[i],
share_length * kv_bytes);
ASSERT(BM_SUCCESS == ret);
ret = bm_malloc_device_byte(bm_handle, &tmp_past_value[i],
share_length * kv_bytes);
ASSERT(BM_SUCCESS == ret);
d2d(tmp_past_key[i], past_key[i], 0, share_length * kv_bytes);
d2d(tmp_past_value[i], past_value[i], 0, share_length * kv_bytes);
}
}
void Qwen::deinit() {
// step1: free in tensors
free_in_tensors();
// step2: free tmp_past_key and tmp_past_value
if (prefill_reuse == 1) {
for (int i = 0; i < NUM_LAYERS; i++) {
bm_free_device(bm_handle, tmp_past_key[i]);
bm_free_device(bm_handle, tmp_past_value[i]);
}
}
// step3: free p_bmrt and bm_handle
if (handles.size() == 0) {
throw std::runtime_error("you must create handles before deinit");
}
bmrt_destroy(p_bmrt);
for (auto h : handles) {
bm_dev_free(h);
}
handles.clear();
}
int Qwen::greedy_search(const bm_net_info_t *net, bm_device_mem_t &logits_mem) {
auto &out_mem = net->stages[0].output_mems[0];
head_launch(net, logits_mem, 0);
int token = 0;
bm_memcpy_d2s(bm_handle, (void *)&token, out_mem);
return token;
}
int Qwen::penalty_sample(const bm_net_info_t *net, bm_device_mem_t &logits_mem,
std::vector<int> &input_tokens, int &token_length) {
auto &in1_mem = net->stages[stage_idx].input_mems[1];
auto &in2_mem = net->stages[stage_idx].input_mems[2];
auto &in3_mem = net->stages[stage_idx].input_mems[3];
auto &in4_mem = net->stages[stage_idx].input_mems[4];
auto &out0_mem = net->stages[stage_idx].output_mems[0];
auto &out1_mem = net->stages[stage_idx].output_mems[1];
// repeat_penalty + top_p + top_k + temperature
std::vector<int> generated_tokens(SEQLEN, input_tokens[token_length - 1]);
repeat_last_n = std::min(repeat_last_n, token_length);
std::copy(input_tokens.begin() + token_length - repeat_last_n,
input_tokens.begin() + token_length, generated_tokens.begin());
bm_memcpy_s2d(bm_handle, in1_mem, (void *)generated_tokens.data());
bm_memcpy_s2d(bm_handle, in2_mem, (void *)&top_p);
bm_memcpy_s2d(bm_handle, in3_mem, (void *)&temperature);
bm_memcpy_s2d(bm_handle, in4_mem, (void *)&repeat_penalty);
// inference
head_launch(net, logits_mem, stage_idx);
// get logit & token
int candidate_num = net->stages[stage_idx].output_shapes[0].dims[1];
std::vector<float> probs(candidate_num);
bm_memcpy_d2s(bm_handle, probs.data(), out0_mem);
std::vector<int> tokens(candidate_num);
bm_memcpy_d2s(bm_handle, tokens.data(), out1_mem);
// penalty_sample
std::discrete_distribution<> dist(probs.begin(), probs.end());
return tokens[dist(sgen)];
}
std::vector<uint16_t>
Qwen::load_and_infer_embedding(const std::vector<int> &tokens) {
std::ifstream file(embedding_path, std::ios::binary);
if (!file) {
throw std::runtime_error("Unable to open file\n");
}
size_t embedding_bytes = hidden_bytes;
size_t embedding_dim = embedding_bytes / sizeof(uint16_t);
size_t size = tokens.size();
std::vector<uint16_t> buffer(size * embedding_dim);
for (size_t i = 0; i < size; i++) {
long long start_position = (long long)tokens[i] * embedding_bytes;
file.seekg(start_position, std::ios::beg);
file.read(reinterpret_cast<char *>(&buffer[i * embedding_dim]),
embedding_bytes);
}
return buffer;
}
bm_device_mem_t Qwen::embedding_launch(const bm_net_info_t *net0,
const bm_net_info_t *net1,
const std::vector<int> &tokens) {
bm_device_mem_t out_mem;
if (embedding_path.empty()) {
// embedding : net0->stages[stage_idx]
// embedding_cache : net0->stages[0]
int this_stage_idx = (strcmp(net0->name, "embedding") == 0) ? stage_idx : 0;
auto &in_mem = net0->stages[this_stage_idx].input_mems[0];
out_mem = net0->stages[this_stage_idx].output_mems[0];
bm_memcpy_s2d(bm_handle, in_mem, (void *)tokens.data());
net_launch(net0, this_stage_idx); // prefil embedding
} else {
out_mem = net1->stages[stage_idx].input_mems[0];
empty(bm_handle, out_mem);
auto buffer = load_and_infer_embedding(tokens);
bm_memcpy_s2d(bm_handle, out_mem, (void *)buffer.data());
}
return out_mem;
}
bm_device_mem_t Qwen::lm_launch(const bm_net_info_t *net,
const bm_device_mem_t &out_mem, size_t offset,
size_t size) {
auto &lm_in_mem = net_lm->stages[0].input_mems[0];
auto &lm_out_mem = net_lm->stages[0].output_mems[0];
bm_memcpy_d2d_byte(bm_handle, lm_in_mem, 0, out_mem, offset, size);
net_launch(net_lm, 0);
return lm_out_mem;
}
int Qwen::forward_first(std::vector<int> &tokens) {
std::vector<int> first_tokens(MAX_SHARE_LENGTH, 0);
std::vector<int> position_id(MAX_SHARE_LENGTH, 0);
std::vector<uint16_t> attention_mask(MAX_SHARE_LENGTH * MAX_SHARE_LENGTH,
mask_value);
// std::fill(total_tokens.begin(), total_tokens.end(), 0);
std::copy(tokens.begin(), tokens.end(), total_tokens.data());
std::copy(tokens.begin(), tokens.end(), first_tokens.data());
total_length = tokens.size();
share_length = 0;
unshare_length = 0;
for (int i = 0; i < total_length; i++) {
position_id[i] = i;
}
for (int i = 0; i < total_length; i++) {
for (int j = 0; j < MAX_SHARE_LENGTH; j++) {
if (j <= i) {
attention_mask[i * MAX_SHARE_LENGTH + j] = 0;
}
}
}
// empty
for (int i = 0; i < NUM_LAYERS; i++) {
empty_net(bm_handle, net_blocks[i], stage_idx);
empty_net(bm_handle, net_blocks_cache[i], stage_idx);
}
// forward embeding
auto out_mem = embedding_launch(net_embed, net_blocks[0], first_tokens);
// forward blocks
// make in tensors
bm_memcpy_s2d(bm_handle, inputs_pid.device_mem, (void *)position_id.data());
bm_memcpy_s2d(bm_handle, inputs_attention.device_mem,
(void *)attention_mask.data());
for (int idx = 0; idx < NUM_LAYERS; idx++) {
// init
auto &in0_mem = net_blocks[idx]->stages[stage_idx].input_mems[0];
auto &in1_mem = net_blocks[idx]->stages[stage_idx].input_mems[1];
auto &in2_mem = net_blocks[idx]->stages[stage_idx].input_mems[2];
// move to device
d2d(in0_mem, out_mem, 0, total_length * hidden_bytes);
in1_mem = inputs_pid.device_mem;
in2_mem = inputs_attention.device_mem;
// net forward
// can not to dynamic net launch for combine qwen2-10240 and qwen2-5120
// if (net_blocks[idx]->is_dynamic) {
// dynamic_net_launch(net_blocks[idx], total_length, stage_idx);
// } else {
// net_launch(net_blocks[idx], stage_idx);
// }
net_launch(net_blocks[idx], stage_idx);
out_mem = net_blocks[idx]->stages[stage_idx].output_mems[0];
d2d(past_key[idx], net_blocks[idx]->stages[stage_idx].output_mems[1], 0,
total_length * kv_bytes);
d2d(past_value[idx], net_blocks[idx]->stages[stage_idx].output_mems[2], 0,
total_length * kv_bytes);
}
// forward lmhead
auto lm_out_mem = lm_launch(net_lm, out_mem,
(total_length - 1) * hidden_bytes, hidden_bytes);
int token = 0;
if (generation_mode == "greedy") {
token = greedy_search(net_greedy_head, lm_out_mem);
} else if (generation_mode == "penalty_sample") {
token = penalty_sample(net_penalty_sample_head, lm_out_mem, total_tokens,
total_length);
}
total_tokens[total_length] = token;
total_length += 1;
return token;
}
void Qwen::forward_share(std::vector<int> &tokens) {
std::vector<int> share_tokens(MAX_SHARE_LENGTH, 0);
std::vector<int> position_id(MAX_SHARE_LENGTH, 0);
std::vector<uint16_t> attention_mask(MAX_SHARE_LENGTH * MAX_SHARE_LENGTH,
mask_value);
// std::fill(total_tokens.begin(), total_tokens.end(), 0);
std::copy(tokens.begin(), tokens.end(), total_tokens.data());
std::copy(tokens.begin(), tokens.end(), share_tokens.data());
share_length = tokens.size();
unshare_length = 0;
for (int i = 0; i < share_length; i++) {
position_id[i] = i;
}
for (int i = 0; i < share_length; i++) {
for (int j = 0; j < MAX_SHARE_LENGTH; j++) {
if (j <= i) {
attention_mask[i * MAX_SHARE_LENGTH + j] = 0;
}
}
}
// empty
for (int i = 0; i < NUM_LAYERS; i++) {
empty_net(bm_handle, net_blocks[i], stage_idx);
empty_net(bm_handle, net_blocks_unshare[i], stage_idx);
empty_net(bm_handle, net_blocks_cache[i], stage_idx);
}
// forward embeding
auto out_mem = embedding_launch(net_embed, net_blocks[0], share_tokens);
// forward blocks
// move psition_id & attention_mask to device
bm_memcpy_s2d(bm_handle, inputs_pid.device_mem, (void *)position_id.data());
bm_memcpy_s2d(bm_handle, inputs_attention.device_mem,
(void *)attention_mask.data());
for (int idx = 0; idx < NUM_LAYERS; idx++) {
// init
auto &in0_mem = net_blocks[idx]->stages[stage_idx].input_mems[0];
auto &in1_mem = net_blocks[idx]->stages[stage_idx].input_mems[1];
auto &in2_mem = net_blocks[idx]->stages[stage_idx].input_mems[2];
// move to device
d2d(in0_mem, out_mem, 0, share_length * hidden_bytes);
in1_mem = inputs_pid.device_mem;
in2_mem = inputs_attention.device_mem;
// net forward
// if (net_blocks[idx]->is_dynamic) {
// dynamic_net_launch(net_blocks[idx], share_length, stage_idx);
// } else {
// net_launch(net_blocks[idx], stage_idx);
// }
net_launch(net_blocks[idx], stage_idx);
out_mem = net_blocks[idx]->stages[stage_idx].output_mems[0];
d2d(past_key[idx], net_blocks[idx]->stages[stage_idx].output_mems[1], 0,
share_length * kv_bytes);
d2d(past_value[idx], net_blocks[idx]->stages[stage_idx].output_mems[2], 0,
share_length * kv_bytes);
}
return;
}
int Qwen::forward_unshare(std::vector<int> &tokens) {
std::vector<int> unshare_tokens(MAX_UNSHARE_LENGTH, 0);
std::vector<int> position_id(MAX_UNSHARE_LENGTH, 0);
std::vector<uint16_t> attention_mask(
MAX_UNSHARE_LENGTH * (MAX_SHARE_LENGTH + MAX_UNSHARE_LENGTH), mask_value);
// std::fill(total_tokens.begin() + share_length, total_tokens.end(), 0);
total_tokens.insert(total_tokens.begin() + share_length, tokens.begin(),
tokens.end());
std::copy(tokens.begin(), tokens.end(), unshare_tokens.data());
unshare_length = tokens.size();
for (int i = 0; i < unshare_length; i++) {
position_id[i] = i + share_length;
}
for (int i = 0; i < unshare_length; i++) {
for (int j = 0; j < share_length; j++) {
attention_mask[i * (MAX_SHARE_LENGTH + MAX_UNSHARE_LENGTH) + j] = 0;
}
for (int j = MAX_SHARE_LENGTH; j < MAX_SHARE_LENGTH + MAX_UNSHARE_LENGTH;
j++) {
if (j - MAX_SHARE_LENGTH <= i) {
attention_mask[i * (MAX_SHARE_LENGTH + MAX_UNSHARE_LENGTH) + j] = 0;
}
}
}
// forward embeding
auto out_mem = embedding_launch(net_embed_unshare, net_blocks_unshare[0],
unshare_tokens);
// forward blocks
// move psition_id & attention_mask to device
bm_memcpy_s2d(bm_handle, unshare_pid.device_mem, (void *)position_id.data());
bm_memcpy_s2d(bm_handle, unshare_attention.device_mem,
(void *)attention_mask.data());
int share_size = share_length * kv_bytes;
int unshare_size = unshare_length * kv_bytes;
for (int idx = 0; idx < NUM_LAYERS; idx++) {
// init
auto &in0_mem = net_blocks_unshare[idx]->stages[stage_idx].input_mems[0];
auto &in1_mem = net_blocks_unshare[idx]->stages[stage_idx].input_mems[1];
auto &in2_mem = net_blocks_unshare[idx]->stages[stage_idx].input_mems[2];
auto &in3_mem = net_blocks_unshare[idx]->stages[stage_idx].input_mems[3];
auto &in4_mem = net_blocks_unshare[idx]->stages[stage_idx].input_mems[4];
// move to device
d2d(in0_mem, out_mem, 0, unshare_length * hidden_bytes);
in1_mem = unshare_pid.device_mem;
in2_mem = unshare_attention.device_mem;
d2d(in3_mem, past_key[idx], 0, MAX_SHARE_LENGTH * kv_bytes);
d2d(in4_mem, past_value[idx], 0, MAX_SHARE_LENGTH * kv_bytes);
// net forward
// if (net_blocks[idx]->is_dynamic) {
// dynamic_net_launch(net_blocks_unshare[idx], unshare_length, stage_idx);
// } else {
// net_launch(net_blocks_unshare[idx], stage_idx);
// }
net_launch(net_blocks_unshare[idx], stage_idx);
out_mem = net_blocks_unshare[idx]->stages[stage_idx].output_mems[0];
d2d(past_key[idx],
net_blocks_unshare[idx]->stages[stage_idx].output_mems[1], share_size,
unshare_size);
d2d(past_value[idx],
net_blocks_unshare[idx]->stages[stage_idx].output_mems[2], share_size,
unshare_size);
}
// forward lmhead
auto lm_out_mem = lm_launch(
net_lm, out_mem, (unshare_length - 1) * hidden_bytes, hidden_bytes);
int token = 0;
if (generation_mode == "greedy") {
token = greedy_search(net_greedy_head, lm_out_mem);
} else if (generation_mode == "penalty_sample") {
token = penalty_sample(net_penalty_sample_head, lm_out_mem, tokens,
unshare_length);
}
total_length = share_length + unshare_length;
total_tokens[total_length] = token;
total_length += 1;
return token;
}
int Qwen::forward_next() {
int cur_token = total_tokens[total_length - 1];
std::vector<uint16_t> attention_mask(SEQLEN + 1, 0);
for (int i = total_length - 1; i < SEQLEN; i++) {
attention_mask[i] = mask_value;
}
int32_t position_id = total_length - 1;
// embedding
std::vector<int> cur_tokens = {cur_token};
auto out_mem =
embedding_launch(net_embed_cache, net_blocks_cache[0], cur_tokens);
// blocks
// move psition_id & attention_mask to device
bm_memcpy_s2d(bm_handle, next_pid.device_mem, &position_id);
bm_memcpy_s2d(bm_handle, next_attention.device_mem,
(void *)attention_mask.data());
int token_offset = (total_length - 1) * kv_bytes;
for (int idx = 0; idx < NUM_LAYERS; idx++) {
// init
auto &in0_mem = net_blocks_cache[idx]->stages[stage_idx].input_mems[0];
auto &in1_mem = net_blocks_cache[idx]->stages[stage_idx].input_mems[1];
auto &in2_mem = net_blocks_cache[idx]->stages[stage_idx].input_mems[2];
auto &out0_mem = net_blocks_cache[idx]->stages[stage_idx].output_mems[0];
auto &out1_mem = net_blocks_cache[idx]->stages[stage_idx].output_mems[1];
auto &out2_mem = net_blocks_cache[idx]->stages[stage_idx].output_mems[2];
// move to device
// empty(bm_handle, in0_mem);
d2d(in0_mem, out_mem);
in1_mem = next_pid.device_mem;
in2_mem = next_attention.device_mem;
// net forward
net_launch(net_blocks_cache[idx], stage_idx);
out_mem = out0_mem;
bm_memcpy_d2d_byte(bm_handle, past_key[idx], token_offset, out1_mem, 0,
kv_bytes);
bm_memcpy_d2d_byte(bm_handle, past_value[idx], token_offset, out2_mem, 0,
kv_bytes);
}
// forward lmhead
auto lm_out_mem = lm_launch(net_lm, out_mem, 0, hidden_bytes);
int token = 0;
if (generation_mode == "greedy") {