Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to reach FID 1.92 on Imagenet 64 #8

Open
Schwartz-Zha opened this issue Jul 10, 2024 · 0 comments
Open

How to reach FID 1.92 on Imagenet 64 #8

Schwartz-Zha opened this issue Jul 10, 2024 · 0 comments

Comments

@Schwartz-Zha
Copy link

I downloaded the pretrained Imagenet 64 checkpoint and use the provided sampling commands (with slight modification to make it run on my machine)

export OMPI_COMM_WORLD_RANK=0
export OMPI_COMM_WORLD_LOCAL_RANK=0
export OMPI_COMM_WORLD_SIZE=8

MODEL_FLAGS="--data_name=imagenet64 --class_cond=True --eval_interval=1000 --save_interval=1000 --num_classes=1000 --eval_batch=250 --eval_fid=True --eval_similarity=False --check_dm_performance=False --log_interval=100"

# CUDA_VISIBLE_DEVICES=0 mpiexec -n 1 python ./code/image_sample.py $MODEL_FLAGS --class_cond=True --num_classes=1000 --out_dir ./ctm-sample-paths/ctm_bs_1440/ --model_path=./ctm-runs/ctm_bs_1440/ema_0.999_006000.pt --training_mode=ctm --class_cond=True --eval_num_samples=6400 --batch_size=800 --device_id=0 --stochastic_seed=True --save_format=npz --ind_1=36 --ind_2=20 --use_MPI=True --sampler=exact --sampling_steps=1

CUDA_VISIBLE_DEVICES=0 mpiexec -n 1 python ./code/image_sample.py $MODEL_FLAGS --class_cond=True --num_classes=1000 --out_dir ./ctm-sample-paths/ctm_bs_1440_author/ --model_path=./ckpts/ema_0.999_049000.pt --training_mode=ctm --class_cond=True --eval_num_samples=6400 --batch_size=800 --device_id=0 --stochastic_seed=True --save_format=npz --ind_1=36 --ind_2=20 --use_MPI=True --sampler=exact --sampling_steps=1

And I tested it according to the provided instrutions.

CUDA_VISIBLE_DEVICES=0 python code/evaluations/evaluator.py     ref-statistics/VIRTUAL_imagenet64_labeled.npz     ctm-sample-paths/ctm_bs_1440_author/ctm_exact_sampler_1_steps_049000_itrs_0.999_ema_/

But the performance reading is significantly worse.

Inception Score: 68.49456024169922FID: 6.839029518808786
sFID: 22.465793478419187
Precision: 0.7965625
Recall: 0.6551

How exactly could I read FID 1.92 ? Even with pretrained model directly from the author?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant