This is the sixth chapter of the Kotlin Serialization Guide. It goes beyond JSON, covering alternative and custom formats. Unlike JSON, which is stable, these are currently experimental features of Kotlin Serialization.
Table of contents
CBOR is one of the standard compact binary encodings for JSON, so it supports a subset of JSON features and is generally very similar to JSON in use, but produces binary data.
CBOR support is (experimentally) available in a separate
org.jetbrains.kotlinx:kotlinx-serialization-cbor:<version>
module.
Cbor class has Cbor.encodeToByteArray and Cbor.decodeFromByteArray functions. Let us take the basic example from the JSON encoding, but encode it using CBOR.
@Serializable
data class Project(val name: String, val language: String)
fun main() {
val data = Project("kotlinx.serialization", "Kotlin")
val bytes = Cbor.encodeToByteArray(data)
println(bytes.toAsciiHexString())
val obj = Cbor.decodeFromByteArray<Project>(bytes)
println(obj)
}
You can get the full code here.
We print a filtered ASCII representation of the output, writing non-ASCII data in hex, so we see how all the original strings are directly represented in CBOR, but the format delimiters themselves are binary.
{BF}dnameukotlinx.serializationhlanguagefKotlin{FF}
Project(name=kotlinx.serialization, language=Kotlin)
In CBOR hex notation, the output is equivalent to the following:
BF # map(*)
64 # text(4)
6E616D65 # "name"
75 # text(21)
6B6F746C696E782E73657269616C697A6174696F6E # "kotlinx.serialization"
68 # text(8)
6C616E6775616765 # "language"
66 # text(6)
4B6F746C696E # "Kotlin"
FF # primitive(*)
Note, CBOR as a format, unlike JSON, supports maps with non-trivial keys (see the Allowing structured map keys section for JSON workarounds), and Kotlin maps are serialized as CBOR maps, but some parsers (like
jackson-dataformat-cbor
) don't support this.
CBOR format is often used to communicate with IoT devices where new properties could be added as a part of a device's API evolution. By default, unknown keys encountered during deserialization produce an error. This behavior can be configured with the ignoreUnknownKeys property.
val format = Cbor { ignoreUnknownKeys = true }
@Serializable
data class Project(val name: String)
fun main() {
val data = format.decodeFromHexString<Project>(
"bf646e616d65756b6f746c696e782e73657269616c697a6174696f6e686c616e6775616765664b6f746c696eff"
)
println(data)
}
You can get the full code here.
It decodes the object, despite the fact that Project
is missing the language
property.
Project(name=kotlinx.serialization)
In CBOR hex notation, the input is equivalent to the following:
BF # map(*)
64 # text(4)
6E616D65 # "name"
75 # text(21)
6B6F746C696E782E73657269616C697A6174696F6E # "kotlinx.serialization"
68 # text(8)
6C616E6775616765 # "language"
66 # text(6)
4B6F746C696E # "Kotlin"
FF # primitive(*)
Per the RFC 7049 Major Types section, CBOR supports the following data types:
- Major type 0: an unsigned integer
- Major type 1: a negative integer
- Major type 2: a byte string
- Major type 3: a text string
- Major type 4: an array of data items
- Major type 5: a map of pairs of data items
- Major type 6: optional semantic tagging of other major types
- Major type 7: floating-point numbers and simple data types that need no content, as well as the "break" stop code
By default, Kotlin ByteArray
instances are encoded as major type 4.
When major type 2 is desired, then the @ByteString
annotation can be used.
@Serializable
data class Data(
@ByteString
val type2: ByteArray, // CBOR Major type 2
val type4: ByteArray // CBOR Major type 4
)
fun main() {
val data = Data(byteArrayOf(1, 2, 3, 4), byteArrayOf(5, 6, 7, 8))
val bytes = Cbor.encodeToByteArray(data)
println(bytes.toAsciiHexString())
val obj = Cbor.decodeFromByteArray<Data>(bytes)
println(obj)
}
You can get the full code here.
As we see, the CBOR byte that precedes the data is different for different types of encoding.
{BF}etype2D{01}{02}{03}{04}etype4{9F}{05}{06}{07}{08}{FF}{FF}
Data(type2=[1, 2, 3, 4], type4=[5, 6, 7, 8])
In CBOR hex notation, the output is equivalent to the following:
BF # map(*)
65 # text(5)
7479706532 # "type2"
44 # bytes(4)
01020304 # "\x01\x02\x03\x04"
65 # text(5)
7479706534 # "type4"
9F # array(*)
05 # unsigned(5)
06 # unsigned(6)
07 # unsigned(7)
08 # unsigned(8)
FF # primitive(*)
FF # primitive(*)
Protocol Buffers is a language-neutral binary format that normally relies on a separate ".proto" file that defines the protocol schema. It is more compact than CBOR, because it assigns integer numbers to fields instead of names.
Protocol buffers support is (experimentally) available in a separate
org.jetbrains.kotlinx:kotlinx-serialization-protobuf:<version>
module.
Kotlin Serialization is using proto2 semantics, where all fields are explicitly required or optional. For a basic example we change our example to use the ProtoBuf class with ProtoBuf.encodeToByteArray and ProtoBuf.decodeFromByteArray functions.
@Serializable
data class Project(val name: String, val language: String)
fun main() {
val data = Project("kotlinx.serialization", "Kotlin")
val bytes = ProtoBuf.encodeToByteArray(data)
println(bytes.toAsciiHexString())
val obj = ProtoBuf.decodeFromByteArray<Project>(bytes)
println(obj)
}
You can get the full code here.
{0A}{15}kotlinx.serialization{12}{06}Kotlin
Project(name=kotlinx.serialization, language=Kotlin)
In ProtoBuf hex notation, the output is equivalent to the following:
Field #1: 0A String Length = 21, Hex = 15, UTF8 = "kotlinx.serialization"
Field #2: 12 String Length = 6, Hex = 06, UTF8 = "Kotlin"
By default, field numbers in the Kotlin Serialization ProtoBuf implementation are automatically assigned, which does not provide the ability to define a stable data schema that evolves over time. That is normally achieved by writing a separate ".proto" file. However, with Kotlin Serialization we can get this ability without a separate schema file, instead using the ProtoNumber annotation.
@Serializable
data class Project(
@ProtoNumber(1)
val name: String,
@ProtoNumber(3)
val language: String
)
fun main() {
val data = Project("kotlinx.serialization", "Kotlin")
val bytes = ProtoBuf.encodeToByteArray(data)
println(bytes.toAsciiHexString())
val obj = ProtoBuf.decodeFromByteArray<Project>(bytes)
println(obj)
}
You can get the full code here.
We see in the output that the number for the first property name
did not change (as it is numbered from one by default),
but it did change for the language
property.
{0A}{15}kotlinx.serialization{1A}{06}Kotlin
Project(name=kotlinx.serialization, language=Kotlin)
In ProtoBuf hex notation, the output is equivalent to the following:
Field #1: 0A String Length = 21, Hex = 15, UTF8 = "kotlinx.serialization" (total 21 chars)
Field #3: 1A String Length = 6, Hex = 06, UTF8 = "Kotlin"
Protocol buffers support various integer encodings optimized for different ranges of integers. They are specified using the ProtoType annotation and the ProtoIntegerType enum. The following example shows all three supported options.
@Serializable
class Data(
@ProtoType(ProtoIntegerType.DEFAULT)
val a: Int,
@ProtoType(ProtoIntegerType.SIGNED)
val b: Int,
@ProtoType(ProtoIntegerType.FIXED)
val c: Int
)
fun main() {
val data = Data(1, -2, 3)
println(ProtoBuf.encodeToByteArray(data).toAsciiHexString())
}
You can get the full code here.
- The default is a varint encoding (
intXX
) that is optimized for small non-negative numbers. The value of1
is encoded in one byte01
. - The signed is a signed ZigZag encoding (
sintXX
) that is optimized for small signed integers. The value of-2
is encoded in one byte03
. - The fixed encoding (
fixedXX
) always uses a fixed number of bytes. The value of3
is encoded as four bytes03 00 00 00
.
uintXX
andsfixedXX
protocol buffer types are not supported.
{08}{01}{10}{03}{1D}{03}{00}{00}{00}
In ProtoBuf hex notation the output is equivalent to the following:
Field #1: 08 Varint Value = 1, Hex = 01
Field #2: 10 Varint Value = 3, Hex = 03
Field #3: 1D Fixed32 Value = 3, Hex = 03-00-00-00
Kotlin lists and other collections are representend as repeated fields.
In the protocol buffers when the list is empty there are no elements in the
stream with the corresponding number. For Kotlin Serialization you must explicitly specify a default of emptyList()
for any property of a collection or map type. Otherwise you will not be able deserialize an empty
list, which is indistinguishable in protocol buffers from a missing field.
@Serializable
data class Data(
val a: List<Int> = emptyList(),
val b: List<Int> = emptyList()
)
fun main() {
val data = Data(listOf(1, 2, 3), listOf())
val bytes = ProtoBuf.encodeToByteArray(data)
println(bytes.toAsciiHexString())
println(ProtoBuf.decodeFromByteArray<Data>(bytes))
}
You can get the full code here.
{08}{01}{08}{02}{08}{03}
Data(a=[1, 2, 3], b=[])
Packed repeated fields are not supported.
In ProtoBuf diagnostic mode the output is equivalent to the following:
Field #1: 08 Varint Value = 1, Hex = 01
Field #1: 08 Varint Value = 2, Hex = 02
Field #1: 08 Varint Value = 3, Hex = 03
Kotlin Serialization can serialize a class into a flat map with String
keys via
the Properties format implementation.
Properties support is (experimentally) available in a separate
org.jetbrains.kotlinx:kotlinx-serialization-properties:<version>
module.
@Serializable
class Project(val name: String, val owner: User)
@Serializable
class User(val name: String)
fun main() {
val data = Project("kotlinx.serialization", User("kotlin"))
val map = Properties.encodeToMap(data)
map.forEach { (k, v) -> println("$k = $v") }
}
You can get the full code here.
The resulting map has dot-separated keys representing keys of the nested objects.
name = kotlinx.serialization
owner.name = kotlin
A custom format for Kotlin Serialization must provide an implementation for the Encoder and Decoder interfaces that
we saw used in the Serializers chapter.
These are pretty large interfaces. For convenience
the AbstractEncoder and AbstractDecoder skeleton implementations are provided to simplify the task.
In AbstractEncoder most of the encodeXxx
methods have a default implementation that
delegates to encodeValue(value: Any)
— the only method that must be
implemented to get a basic working format.
Let us start with a trivial format implementation that encodes the data into a single list of primitive
constituent objects in the order they were written in the source code. To start, we implement a simple Encoder by
overriding encodeValue
in AbstractEncoder.
class ListEncoder : AbstractEncoder() {
val list = mutableListOf<Any>()
override val serializersModule: SerializersModule = EmptySerializersModule
override fun encodeValue(value: Any) {
list.add(value)
}
}
Now we write a convenience top-level function that creates an encoder that encodes an object and returns a list.
fun <T> encodeToList(serializer: SerializationStrategy<T>, value: T): List<Any> {
val encoder = ListEncoder()
encoder.encodeSerializableValue(serializer, value)
return encoder.list
}
For even more convenience, to avoid the need to explicitly pass a serializer, we write an inline
overload of
the encodeToList
function with a reified
type parameter using the serializer function to retrieve
the appropriate KSerializer instance for the actual type.
inline fun <reified T> encodeToList(value: T) = encodeToList(serializer(), value)
Now we can test it.
@Serializable
data class Project(val name: String, val owner: User, val votes: Int)
@Serializable
data class User(val name: String)
fun main() {
val data = Project("kotlinx.serialization", User("kotlin"), 9000)
println(encodeToList(data))
}
You can get the full code here.
As a result, we got all the primitive values in our object graph visited and put into a list in serial order.
[kotlinx.serialization, kotlin, 9000]
By itself, that's a useful feature if we need compute some kind of hashcode or digest for all the data that is contained in a serializable object tree.
A decoder needs to implement more substance.
- decodeValue — returns the next value from the list.
- decodeElementIndex — returns the next index of a deserialized value.
In this primitive format deserialization always happens in order, so we keep track of the index
in the
elementIndex
variable. See the Hand-written composite serializer section on how it ends up being used. - beginStructure — returns a new instance of the
ListDecoder
, so that each structure that is being recursively decoded keeps track of its ownelementIndex
state separately.
class ListDecoder(val list: ArrayDeque<Any>) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule
override fun decodeValue(): Any = list.removeFirst()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == descriptor.elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
ListDecoder(list)
}
A couple of convenience functions for decoding.
fun <T> decodeFromList(list: List<Any>, deserializer: DeserializationStrategy<T>): T {
val decoder = ListDecoder(ArrayDeque(list))
return decoder.decodeSerializableValue(deserializer)
}
inline fun <reified T> decodeFromList(list: List<Any>): T = decodeFromList(list, serializer())
That is enough to start encoding and decoding basic serializable classes.
fun main() {
val data = Project("kotlinx.serialization", User("kotlin"), 9000)
val list = encodeToList(data)
println(list)
val obj = decodeFromList<Project>(list)
println(obj)
}
You can get the full code here.
Now we can convert a list of primitives back to an object tree.
[kotlinx.serialization, kotlin, 9000]
Project(name=kotlinx.serialization, owner=User(name=kotlin), votes=9000)
The decoder we have implemented keeps track of the elementIndex
in its state and implements
decodeElementIndex
. This means that it is going to work with an arbitrary serializer, even the
simple one we wrote in
the Hand-written composite serializer section.
However, this format always stores elements in order, so this bookkeeping is not needed and
undermines decoding performance. All auto-generated serializers on the JVM support
the Sequential decoding protocol (experimental), and the decoder can indicate
its support by returning true
from the CompositeDecoder.decodeSequentially function.
class ListDecoder(val list: ArrayDeque<Any>) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule
override fun decodeValue(): Any = list.removeFirst()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == descriptor.elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
ListDecoder(list)
override fun decodeSequentially(): Boolean = true
}
You can get the full code here.
This basic format, so far, cannot properly represent collections. In encodes them, but it does not keep
track of how many elements there are in the collection or where it ends, so it cannot properly decode them.
First, let us add proper support for collections to the encoder by implementing the
Encoder.beginCollection function. The beginCollection
function takes a collection size as a parameter,
so we encode it to add it to the result.
Our encoder implementation does not keep any state, so it just returns this
from the beginCollection
function.
class ListEncoder : AbstractEncoder() {
val list = mutableListOf<Any>()
override val serializersModule: SerializersModule = EmptySerializersModule
override fun encodeValue(value: Any) {
list.add(value)
}
override fun beginCollection(descriptor: SerialDescriptor, collectionSize: Int): CompositeEncoder {
encodeInt(collectionSize)
return this
}
}
The decoder, for our case, needs to only implement the CompositeDecoder.decodeCollectionSize function in addition to the previous code.
The formats that store collection size in advance have to return
true
fromdecodeSequentially
.
class ListDecoder(val list: ArrayDeque<Any>, var elementsCount: Int = 0) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule
override fun decodeValue(): Any = list.removeFirst()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
ListDecoder(list, descriptor.elementsCount)
override fun decodeSequentially(): Boolean = true
override fun decodeCollectionSize(descriptor: SerialDescriptor): Int =
decodeInt().also { elementsCount = it }
}
That is all that is needed to support collections and maps.
@Serializable
data class Project(val name: String, val owners: List<User>, val votes: Int)
@Serializable
data class User(val name: String)
fun main() {
val data = Project("kotlinx.serialization", listOf(User("kotlin"), User("jetbrains")), 9000)
val list = encodeToList(data)
println(list)
val obj = decodeFromList<Project>(list)
println(obj)
}
You can get the full code here.
We see the size of the list added to the result, letting the decoder know where to stop.
[kotlinx.serialization, 2, kotlin, jetbrains, 9000]
Project(name=kotlinx.serialization, owners=[User(name=kotlin), User(name=jetbrains)], votes=9000)
Our trivial format does not support null
values so far. For nullable types we need to add some kind
of "null indicator", telling whether the upcoming value is null or not.
In the encoder implementation we override Encoder.encodeNull and Encoder.encodeNotNullMark.
override fun encodeNull() = encodeValue("NULL")
override fun encodeNotNullMark() = encodeValue("!!")
In the decoder implementation we override Decoder.decodeNotNullMark.
override fun decodeNotNullMark(): Boolean = decodeString() != "NULL"
Let us test nullable properties both with not-null and null values.
@Serializable
data class Project(val name: String, val owner: User?, val votes: Int?)
@Serializable
data class User(val name: String)
fun main() {
val data = Project("kotlinx.serialization", User("kotlin") , null)
val list = encodeToList(data)
println(list)
val obj = decodeFromList<Project>(list)
println(obj)
}
You can get the full code here.
In the output we see how not-null!!
and NULL
marks are used.
[kotlinx.serialization, !!, kotlin, NULL]
Project(name=kotlinx.serialization, owner=User(name=kotlin), votes=null)
Now we are ready for an example of an efficient binary format. We are going to write data to the
java.io.DataOutput implementation. Instead of encodeValue
we must override the individual
encodeXxx
functions for each of ten primitives in the encoder.
class DataOutputEncoder(val output: DataOutput) : AbstractEncoder() {
override val serializersModule: SerializersModule = EmptySerializersModule
override fun encodeBoolean(value: Boolean) = output.writeByte(if (value) 1 else 0)
override fun encodeByte(value: Byte) = output.writeByte(value.toInt())
override fun encodeShort(value: Short) = output.writeShort(value.toInt())
override fun encodeInt(value: Int) = output.writeInt(value)
override fun encodeLong(value: Long) = output.writeLong(value)
override fun encodeFloat(value: Float) = output.writeFloat(value)
override fun encodeDouble(value: Double) = output.writeDouble(value)
override fun encodeChar(value: Char) = output.writeChar(value.toInt())
override fun encodeString(value: String) = output.writeUTF(value)
override fun encodeEnum(enumDescriptor: SerialDescriptor, index: Int) = output.writeInt(index)
override fun beginCollection(descriptor: SerialDescriptor, collectionSize: Int): CompositeEncoder {
encodeInt(collectionSize)
return this
}
override fun encodeNull() = encodeBoolean(false)
override fun encodeNotNullMark() = encodeBoolean(true)
}
The decoder implementation mirrors encoder's implementation overriding all the primitive decodeXxx
functions.
class DataInputDecoder(val input: DataInput, var elementsCount: Int = 0) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule
override fun decodeBoolean(): Boolean = input.readByte().toInt() != 0
override fun decodeByte(): Byte = input.readByte()
override fun decodeShort(): Short = input.readShort()
override fun decodeInt(): Int = input.readInt()
override fun decodeLong(): Long = input.readLong()
override fun decodeFloat(): Float = input.readFloat()
override fun decodeDouble(): Double = input.readDouble()
override fun decodeChar(): Char = input.readChar()
override fun decodeString(): String = input.readUTF()
override fun decodeEnum(enumDescriptor: SerialDescriptor): Int = input.readInt()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
DataInputDecoder(input, descriptor.elementsCount)
override fun decodeSequentially(): Boolean = true
override fun decodeCollectionSize(descriptor: SerialDescriptor): Int =
decodeInt().also { elementsCount = it }
override fun decodeNotNullMark(): Boolean = decodeBoolean()
}
We can now serialize and deserialize arbitrary data. For example, the same classes as were used in the CBOR (experimental) and ProtoBuf (experimental) sections.
@Serializable
data class Project(val name: String, val language: String)
fun main() {
val data = Project("kotlinx.serialization", "Kotlin")
val output = ByteArrayOutputStream()
encodeTo(DataOutputStream(output), data)
val bytes = output.toByteArray()
println(bytes.toAsciiHexString())
val input = ByteArrayInputStream(bytes)
val obj = decodeFrom<Project>(DataInputStream(input))
println(obj)
}
You can get the full code here.
As we can see, the result is a dense binary format that only contains the data that is being serialized. It can be easily tweaked for any kind of domain-specific compact encoding.
{00}{15}kotlinx.serialization{00}{06}Kotlin
Project(name=kotlinx.serialization, language=Kotlin)
A format implementation might provide special support for data types that are not among the list of primitive
types in Kotlin Serialization, and do not have a corresponding encodeXxx
/decodeXxx
function.
In the encoder this is achieved by overriding the
encodeSerializableValue(serializer, value)
function.
In our DataOutput
format example we might want to provide a specialized efficient data path for serializing an array
of bytes since DataOutput has a special method for this purpose.
Detection of the type is performed by looking at the serializer
, not by checking the type of the value
being serialized, so we fetch the builtin KSerializer instance for ByteArray
type.
This an important difference. This way our format implementation properly supports Custom serializers that a user might specify for a type that just happens to be internally represented as a byte array, but need a different serial representation.
private val byteArraySerializer = serializer<ByteArray>()
Specifically for byte arrays, we could have also used the builtin ByteArraySerializer function.
We add the corresponding code to the Encoder implementation of our
Efficient binary format. To make our ByteArray
encoding even more efficient,
we add a trivial implementation of encodeCompactSize
function that uses only one byte to represent
a size of up to 254 bytes.
override fun <T> encodeSerializableValue(serializer: SerializationStrategy<T>, value: T) {
if (serializer === byteArraySerializer)
encodeByteArray(value as ByteArray)
else
super.encodeSerializableValue(serializer, value)
}
private fun encodeByteArray(bytes: ByteArray) {
encodeCompactSize(bytes.size)
output.write(bytes)
}
private fun encodeCompactSize(value: Int) {
if (value < 0xff) {
output.writeByte(value)
} else {
output.writeByte(0xff)
output.writeInt(value)
}
}
A similar code is added to the Decoder implementation. Here we override the decodeSerializableValue function.
@Suppress("UNCHECKED_CAST")
override fun <T> decodeSerializableValue(deserializer: DeserializationStrategy<T>, previousValue: T?): T =
if (deserializer === byteArraySerializer)
decodeByteArray() as T
else
super.decodeSerializableValue(deserializer, previousValue)
private fun decodeByteArray(): ByteArray {
val bytes = ByteArray(decodeCompactSize())
input.readFully(bytes)
return bytes
}
private fun decodeCompactSize(): Int {
val byte = input.readByte().toInt() and 0xff
if (byte < 0xff) return byte
return input.readInt()
}
Now everything is ready to perform serialization of some byte arrays.
@Serializable
data class Project(val name: String, val attachment: ByteArray)
fun main() {
val data = Project("kotlinx.serialization", byteArrayOf(0x0A, 0x0B, 0x0C, 0x0D))
val output = ByteArrayOutputStream()
encodeTo(DataOutputStream(output), data)
val bytes = output.toByteArray()
println(bytes.toAsciiHexString())
val input = ByteArrayInputStream(bytes)
val obj = decodeFrom<Project>(DataInputStream(input))
println(obj)
}
You can get the full code here.
As we can see, our custom byte array format is being used, with the compact encoding of its size in one byte.
{00}{15}kotlinx.serialization{04}{0A}{0B}{0C}{0D}
Project(name=kotlinx.serialization, attachment=[10, 11, 12, 13])
This chapter concludes Kotlin Serialization Guide.