You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: comp/language/index.html
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -51,7 +51,7 @@ <h1 class="title">Basic Formal Language Theory</h1>
51
51
<p><strong>Example.</strong><spanclass="math inline">\(\{\texttt{0}, \texttt{1}\}^8\)</span> is the language of all 8-bit binary strings.</p>
52
52
<p><strong>Definition 4. (Union)</strong> The <em>union</em> of two languages <spanclass="math inline">\(L_1\)</span> and <spanclass="math inline">\(L_2\)</span> is the language <spanclass="math display">\[L_1 \cup L_2 = \{ w\ |\ w \in L_1 \lor w \in L_2 \}\]</span></p>
53
53
<p><strong>Definition 5. (Intersection)</strong> The <em>intersection</em> of two languages <spanclass="math inline">\(L_1\)</span> and <spanclass="math inline">\(L_2\)</span> is the language <spanclass="math display">\[L_1 \cap L_2 = \{ w\ |\ w \in L_1 \land w \in L_2 \}\]</span></p>
54
-
<p><strong>Definition 6. (Complement)</strong> The <em>complement</em> of a language <spanclass="math inline">\(L\)</span> over <spanclass="math inline">\(\Sigma\)</span> is the language <spanclass="math display">\[\overline{L} = \Sigma^* \setminus L\]</span></p>
54
+
<p><strong>Definition 6. (Complementation)</strong> The <em>complement</em> of a language <spanclass="math inline">\(L\)</span> over <spanclass="math inline">\(\Sigma\)</span> is the language <spanclass="math display">\[\overline{L} = \Sigma^* \setminus L\]</span></p>
55
55
<p><strong>Definition 7. (Concatenation)</strong> The <em>concatenation</em> of two languages <spanclass="math inline">\(L_1\)</span> and <spanclass="math inline">\(L_2\)</span> is the language <spanclass="math display">\[L_1 \circ L_2 = \{ w_1w_2\ |\ w_1 \in L_1 \land w_2 \in L_2 \}\]</span></p>
56
56
<p>Additionally, we use <spanclass="math inline">\(L^k\)</span> to denote the language obtained by concatenating <spanclass="math inline">\(L\)</span> to itself <spanclass="math inline">\(k\)</span> times.</p>
57
57
<p><strong>Definition 8. (Kleene star / Closure)</strong> The <em>Kleene star</em> or <em>closure</em> of a language <spanclass="math inline">\(L\)</span> is the language <spanclass="math display">\[L^* = \{\varepsilon\} \cup L \cup L^2 \cup L^3 \cup \cdots\]</span></p>
0 commit comments