Skip to content

Commit 2baaa48

Browse files
committed
math/set: update
1 parent 9235ab2 commit 2baaa48

File tree

2 files changed

+15
-12
lines changed

2 files changed

+15
-12
lines changed

math/set/index.html

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
<meta name="generator" content="pandoc">
99
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
1010
<meta name="author" content="Mort Yao">
11-
<meta name="dcterms.date" content="2016-12-15">
11+
<meta name="dcterms.date" content="2017-04-02">
1212
<title>Naive Set Theory</title>
1313
<link rel="canonical" href="https://wiki.soimort.org/math/set">
1414
<style type="text/css">code { white-space: pre; }</style>
@@ -34,26 +34,27 @@
3434
<header>
3535
<h1 class="title">Naive Set Theory</h1>
3636
<address class="author">Mort Yao</address>
37-
<!-- h3 class="date">2016-12-15</h3 -->
37+
<!-- h3 class="date">2017-04-02</h3 -->
3838
</header>
3939
<div id="content">
4040
<p>Basic set theory, with ZF axioms:</p>
4141
<ul>
4242
<li>Paul Halmos. <strong><em>Naive Set Theory.</em></strong></li>
4343
</ul>
4444
<hr />
45-
<p><strong>Countable and uncountable sets.</strong> A set is called <em>countable</em> if its elements can be enumerated; otherwise, it is called <em>uncountable</em>.</p>
46-
<p>Clearly, all finite sets are countable. The set of integers and the set of rational numbers are also countable. However, the set of real numbers <span class="math inline">\(\mathbb{R}\)</span> is uncountable.</p>
45+
<p><strong>Finite sets and infinite sets</strong>. A set is called <em>finite</em> if it contains finitely many elements; otherwise, it is called <em>infinite</em>.</p>
46+
<p><strong>Countable set and uncountable sets.</strong> A set is called <em>countable</em> if its elements can be enumerated; otherwise, it is called <em>uncountable</em>.</p>
47+
<p>Clearly, all finite sets are countable. The set of natural numbers <span class="math inline">\(\mathbb{N}\)</span>, the set of integers <span class="math inline">\(\mathbb{Z}\)</span> and the set of rational numbers <span class="math inline">\(\mathbb{Q}\)</span> are also countable. However, the set of real numbers <span class="math inline">\(\mathbb{R}\)</span> is uncountable.</p>
4748
<p><strong>Subset and superset.</strong> <span class="math inline">\(A\)</span> is a <em>subset</em> of <span class="math inline">\(B\)</span> (or: <span class="math inline">\(B\)</span> is a <em>superset</em> of <span class="math inline">\(A\)</span>), denoted as <span class="math inline">\(A \subseteq B\)</span> (or: <span class="math inline">\(B \supseteq A\)</span>), if and only if for every <span class="math inline">\(x \in A\)</span>, there is <span class="math inline">\(x \in B\)</span>.</p>
4849
<p><span class="math inline">\(A\)</span> and <span class="math inline">\(B\)</span> are said to be equal, denoted as <span class="math inline">\(A = B\)</span>, if and only if <span class="math inline">\(A \subseteq B\)</span> and <span class="math inline">\(B \subseteq A\)</span>; otherwise, <span class="math inline">\(A\)</span> and <span class="math inline">\(B\)</span> are said to be unequal, denoted as <span class="math inline">\(A \neq B\)</span>.</p>
4950
<p><span class="math inline">\(A\)</span> is a <em>proper subset</em> of <span class="math inline">\(B\)</span> (or: <span class="math inline">\(B\)</span> is a <em>proper superset</em> of <span class="math inline">\(A\)</span>), denoted as <span class="math inline">\(A \subset B\)</span> (or: <span class="math inline">\(B \supset A\)</span>), if and only if <span class="math inline">\(A \subseteq B\)</span> and <span class="math inline">\(A \neq B\)</span>.</p>
5051
<p><strong>Union.</strong> <span class="math inline">\(A \cup B = \{ x : x \in A \lor x \in B \}\)</span>.</p>
5152
<p><strong>Intersection.</strong> <span class="math inline">\(A \cap B = \{ x : x \in A \land x \in B \}\)</span>.</p>
5253
<p><strong>Difference.</strong> <span class="math inline">\(A \setminus B = \{ x : x \not\in A \land x \in B \}\)</span>.</p>
5354
<p><strong>Symmetric difference.</strong> <span class="math inline">\(A \triangle B = (A \setminus B) \cup (B \setminus A) = \{ x : x \in A \oplus x \in B \}\)</span>.</p>
54-
<p><strong>Cartesian product.</strong> <span class="math inline">\(A \times B = \{ (x,y) : x \in A \land y \in B \}\)</span>.</p>
55+
<p><strong>Cartesian product (cross product).</strong> <span class="math inline">\(A \times B = \{ (x,y) : x \in A \land y \in B \}\)</span>.</p>
5556
<p><strong>Power set.</strong> <span class="math inline">\(\mathcal{P}(A) = \{ X : X \subseteq A \}\)</span>.</p>
56-
<p><strong>Empty set.</strong> The empty set is denoted as <span class="math inline">\(\varnothing\)</span>. <span class="math inline">\(| \varnothing | = 0\)</span>.</p>
57+
<p><strong>Empty set.</strong> The empty set <span class="math inline">\(\{\}\)</span> is denoted as <span class="math inline">\(\varnothing\)</span>. <span class="math inline">\(| \varnothing | = 0\)</span>.</p>
5758
<p><strong>Disjoint sets.</strong> Two sets <span class="math inline">\(A\)</span> and <span class="math inline">\(B\)</span> are said to be <em>disjoint</em>, if and only if <span class="math inline">\(A \cap B = \varnothing\)</span>.</p>
5859
</div>
5960
<footer>
@@ -91,7 +92,7 @@ <h1 class="title">Naive Set Theory</h1>
9192
<i class="fa fa-anchor" aria-hidden="true"></i>
9293
<code>Permalink</code>
9394
</a> |
94-
Last updated: <span id="update-time">2016-12-15</span>
95+
Last updated: <span id="update-time">2017-04-02</span>
9596
</footer>
9697
</article></main>
9798
</body>

math/set/src.md

Lines changed: 7 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,18 @@
11
% Naive Set Theory
22
% Mort Yao
3-
% 2016-12-15
3+
% 2017-04-02
44

55
Basic set theory, with ZF axioms:
66

77
* Paul Halmos. ***Naive Set Theory.***
88

99
---
1010

11-
**Countable and uncountable sets.** A set is called *countable* if its elements can be enumerated; otherwise, it is called *uncountable*.
11+
**Finite sets and infinite sets**. A set is called *finite* if it contains finitely many elements; otherwise, it is called *infinite*.
1212

13-
Clearly, all finite sets are countable. The set of integers and the set of rational numbers are also countable. However, the set of real numbers $\mathbb{R}$ is uncountable.
13+
**Countable set and uncountable sets.** A set is called *countable* if its elements can be enumerated; otherwise, it is called *uncountable*.
14+
15+
Clearly, all finite sets are countable. The set of natural numbers $\mathbb{N}$, the set of integers $\mathbb{Z}$ and the set of rational numbers $\mathbb{Q}$ are also countable. However, the set of real numbers $\mathbb{R}$ is uncountable.
1416

1517
**Subset and superset.** $A$ is a *subset* of $B$ (or: $B$ is a *superset* of $A$), denoted as $A \subseteq B$ (or: $B \supseteq A$), if and only if for every $x \in A$, there is $x \in B$.
1618

@@ -26,10 +28,10 @@ $A$ is a *proper subset* of $B$ (or: $B$ is a *proper superset* of $A$), denoted
2628

2729
**Symmetric difference.** $A \triangle B = (A \setminus B) \cup (B \setminus A) = \{ x : x \in A \oplus x \in B \}$.
2830

29-
**Cartesian product.** $A \times B = \{ (x,y) : x \in A \land y \in B \}$.
31+
**Cartesian product (cross product).** $A \times B = \{ (x,y) : x \in A \land y \in B \}$.
3032

3133
**Power set.** $\mathcal{P}(A) = \{ X : X \subseteq A \}$.
3234

33-
**Empty set.** The empty set is denoted as $\varnothing$. $| \varnothing | = 0$.
35+
**Empty set.** The empty set $\{\}$ is denoted as $\varnothing$. $| \varnothing | = 0$.
3436

3537
**Disjoint sets.** Two sets $A$ and $B$ are said to be *disjoint*, if and only if $A \cap B = \varnothing$.

0 commit comments

Comments
 (0)