|
8 | 8 | <meta name="generator" content="pandoc"> |
9 | 9 | <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes"> |
10 | 10 | <meta name="author" content="Mort Yao"> |
11 | | - <meta name="dcterms.date" content="2016-12-15"> |
| 11 | + <meta name="dcterms.date" content="2017-04-02"> |
12 | 12 | <title>Naive Set Theory</title> |
13 | 13 | <link rel="canonical" href="https://wiki.soimort.org/math/set"> |
14 | 14 | <style type="text/css">code { white-space: pre; }</style> |
|
34 | 34 | <header> |
35 | 35 | <h1 class="title">Naive Set Theory</h1> |
36 | 36 | <address class="author">Mort Yao</address> |
37 | | - <!-- h3 class="date">2016-12-15</h3 --> |
| 37 | + <!-- h3 class="date">2017-04-02</h3 --> |
38 | 38 | </header> |
39 | 39 | <div id="content"> |
40 | 40 | <p>Basic set theory, with ZF axioms:</p> |
41 | 41 | <ul> |
42 | 42 | <li>Paul Halmos. <strong><em>Naive Set Theory.</em></strong></li> |
43 | 43 | </ul> |
44 | 44 | <hr /> |
45 | | -<p><strong>Countable and uncountable sets.</strong> A set is called <em>countable</em> if its elements can be enumerated; otherwise, it is called <em>uncountable</em>.</p> |
46 | | -<p>Clearly, all finite sets are countable. The set of integers and the set of rational numbers are also countable. However, the set of real numbers <span class="math inline">\(\mathbb{R}\)</span> is uncountable.</p> |
| 45 | +<p><strong>Finite sets and infinite sets</strong>. A set is called <em>finite</em> if it contains finitely many elements; otherwise, it is called <em>infinite</em>.</p> |
| 46 | +<p><strong>Countable set and uncountable sets.</strong> A set is called <em>countable</em> if its elements can be enumerated; otherwise, it is called <em>uncountable</em>.</p> |
| 47 | +<p>Clearly, all finite sets are countable. The set of natural numbers <span class="math inline">\(\mathbb{N}\)</span>, the set of integers <span class="math inline">\(\mathbb{Z}\)</span> and the set of rational numbers <span class="math inline">\(\mathbb{Q}\)</span> are also countable. However, the set of real numbers <span class="math inline">\(\mathbb{R}\)</span> is uncountable.</p> |
47 | 48 | <p><strong>Subset and superset.</strong> <span class="math inline">\(A\)</span> is a <em>subset</em> of <span class="math inline">\(B\)</span> (or: <span class="math inline">\(B\)</span> is a <em>superset</em> of <span class="math inline">\(A\)</span>), denoted as <span class="math inline">\(A \subseteq B\)</span> (or: <span class="math inline">\(B \supseteq A\)</span>), if and only if for every <span class="math inline">\(x \in A\)</span>, there is <span class="math inline">\(x \in B\)</span>.</p> |
48 | 49 | <p><span class="math inline">\(A\)</span> and <span class="math inline">\(B\)</span> are said to be equal, denoted as <span class="math inline">\(A = B\)</span>, if and only if <span class="math inline">\(A \subseteq B\)</span> and <span class="math inline">\(B \subseteq A\)</span>; otherwise, <span class="math inline">\(A\)</span> and <span class="math inline">\(B\)</span> are said to be unequal, denoted as <span class="math inline">\(A \neq B\)</span>.</p> |
49 | 50 | <p><span class="math inline">\(A\)</span> is a <em>proper subset</em> of <span class="math inline">\(B\)</span> (or: <span class="math inline">\(B\)</span> is a <em>proper superset</em> of <span class="math inline">\(A\)</span>), denoted as <span class="math inline">\(A \subset B\)</span> (or: <span class="math inline">\(B \supset A\)</span>), if and only if <span class="math inline">\(A \subseteq B\)</span> and <span class="math inline">\(A \neq B\)</span>.</p> |
50 | 51 | <p><strong>Union.</strong> <span class="math inline">\(A \cup B = \{ x : x \in A \lor x \in B \}\)</span>.</p> |
51 | 52 | <p><strong>Intersection.</strong> <span class="math inline">\(A \cap B = \{ x : x \in A \land x \in B \}\)</span>.</p> |
52 | 53 | <p><strong>Difference.</strong> <span class="math inline">\(A \setminus B = \{ x : x \not\in A \land x \in B \}\)</span>.</p> |
53 | 54 | <p><strong>Symmetric difference.</strong> <span class="math inline">\(A \triangle B = (A \setminus B) \cup (B \setminus A) = \{ x : x \in A \oplus x \in B \}\)</span>.</p> |
54 | | -<p><strong>Cartesian product.</strong> <span class="math inline">\(A \times B = \{ (x,y) : x \in A \land y \in B \}\)</span>.</p> |
| 55 | +<p><strong>Cartesian product (cross product).</strong> <span class="math inline">\(A \times B = \{ (x,y) : x \in A \land y \in B \}\)</span>.</p> |
55 | 56 | <p><strong>Power set.</strong> <span class="math inline">\(\mathcal{P}(A) = \{ X : X \subseteq A \}\)</span>.</p> |
56 | | -<p><strong>Empty set.</strong> The empty set is denoted as <span class="math inline">\(\varnothing\)</span>. <span class="math inline">\(| \varnothing | = 0\)</span>.</p> |
| 57 | +<p><strong>Empty set.</strong> The empty set <span class="math inline">\(\{\}\)</span> is denoted as <span class="math inline">\(\varnothing\)</span>. <span class="math inline">\(| \varnothing | = 0\)</span>.</p> |
57 | 58 | <p><strong>Disjoint sets.</strong> Two sets <span class="math inline">\(A\)</span> and <span class="math inline">\(B\)</span> are said to be <em>disjoint</em>, if and only if <span class="math inline">\(A \cap B = \varnothing\)</span>.</p> |
58 | 59 | </div> |
59 | 60 | <footer> |
@@ -91,7 +92,7 @@ <h1 class="title">Naive Set Theory</h1> |
91 | 92 | <i class="fa fa-anchor" aria-hidden="true"></i> |
92 | 93 | <code>Permalink</code> |
93 | 94 | </a> | |
94 | | - Last updated: <span id="update-time">2016-12-15</span> |
| 95 | + Last updated: <span id="update-time">2017-04-02</span> |
95 | 96 | </footer> |
96 | 97 | </article></main> |
97 | 98 | </body> |
|
0 commit comments