-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA2_createTeamQualityMetricsEpa0.R
748 lines (636 loc) · 28.3 KB
/
A2_createTeamQualityMetricsEpa0.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
EPA0_FROM_TRAIN_DATA_ONLY = TRUE
USE_ALREADY_DEFINED_EP0_MODEL = TRUE
alpha_op = 0.9975 ###
gamma_qb = 0.75 ###
N0_op = 50 ### shrinkage prior: N0 attempts of value 0
beta_o = 0.9975 ###
gamma_o = 0.75 ###
N0_ot = 1500 ### shrinkage prior: N0 attempts of value 0
beta = 0.9975 ###
gamma = 0.75 ###
N0_dt_againstPass = 500 ### shrinkage prior: N0 attempts of value 0
N0_dt_againstRun = 500 ### shrinkage prior: N0 attempts of value 0
N0_dt_total = 1500 ### shrinkage prior: N0 attempts of value 0
#######################################
##### create EP0 and EPA0 columns #####
#######################################
data0 = data_full_0 %>% mutate(down_3or4 = down3 + down4)
if (!USE_ALREADY_DEFINED_EP0_MODEL) {
fit_ep0_regression_model <- function(dataset) {
r.ep0 = lm(
pts_next_score ~
down_3or4 +
yardline_100 +
log(ydstogo),
data = dataset
)
r.ep0
}
}
if (EPA0_FROM_TRAIN_DATA_ONLY) {
### create EP0 model from just the training data
r.ep0.train = fit_ep0_regression_model(data0 %>% filter(train_play))
### create EP0 model the full dataset
r.ep0 = fit_ep0_regression_model(data0)
print(r.ep0.train)
print(r.ep0)
### the coefficients of r.ep0.train and r.ep0 are so similar that
### we'll simply use r.ep0.train to make the EP0 column for the full dataset
### (i.e., I'll just save myself the headache)
r.ep0 = r.ep0.train
} else {
### create EP0 model the full dataset
r.ep0 = fit_ep0_regression_model(data0)
print(r.ep0)
}
### visualize EP0: v1
{
# p3_tib = bind_rows(
# tibble(down2=0,down3=0,down4=0,game_seconds_remaining=0,down_3or4=0,
# ydstogo=10,
# yardline_100=1:99),
# tibble(down2=1,down3=0,down4=0,game_seconds_remaining=0,down_3or4=0,
# ydstogo=10,
# yardline_100=1:99),
# tibble(down2=0,down3=1,down4=0,game_seconds_remaining=0,down_3or4=1,
# ydstogo=10,
# yardline_100=1:99),
# tibble(down2=0,down3=0,down4=1,game_seconds_remaining=0,down_3or4=1,
# ydstogo=10,
# yardline_100=1:99)
# )
# p3_tib = p3_tib %>% mutate(
# ep0_pred = predict(r.ep0, p3_tib),
# down=factor(ifelse(down2==1,2,ifelse(down3==1,3,ifelse(down4==1,4,1))))
# )
# plot_ep0 = p3_tib %>%
# ggplot() +
# geom_line(aes(x=(yardline_100), y=(ep0_pred), color=down), linewidth=1) +
# scale_color_brewer(palette="Set1") +
# xlab("yardline") +
# ylab(TeX("$EP^{(0)}$")) +
# # ylab("EP0") +
# scale_x_continuous()
# # plot_ep0
# # ggsave("plot_ep0.png", plot_ep0, width=8, height=6)
}
### visualize EP0: v2
{
p3_tib = bind_rows(
tibble(game_seconds_remaining=0,down_3or4=0,ydstogo=10,yardline_100=1:99),
tibble(game_seconds_remaining=0,down_3or4=1,ydstogo=10,yardline_100=1:99),
) %>% mutate(
ep0_pred = predict(r.ep0, .),
)
plot_ep0 = p3_tib %>%
ggplot() +
geom_line(aes(x=(yardline_100), y=(ep0_pred), color=factor(down_3or4)), linewidth=1) +
scale_color_brewer(palette="Set1", name="3rd or 4th\ndown") +
xlab("yardline") +
ylab(TeX("$EP^{(0)}$")) +
# ylab("EPA0") +
scale_x_continuous()
# plot_ep0
# ggsave("plot_ep0.png", plot_ep0, width=8, height=6)
}
ep0 <- function(df) {
predict(r.ep0, df)
}
### create EP0 column
data0$ep0 = ep0(data0)
### create EPA0 within each drive
data0 = data0 %>%
mutate(half = ifelse(qtr == 1 | qtr == 2, 1, 2)) %>%
relocate(half, .after = game_id) %>%
group_by(game_id, half, posteam, drive) %>%
mutate(epa0 = c(diff(ep0), NA)) %>%
ungroup()
### create EPA0 for scoring plays
data0 = data0 %>%
mutate(epa0 = ifelse(pts_of_play != 0, pts_of_play - ep0, epa0))
### create EPA0 for the last play of a drive, a non-scoring plays
data0 = data0 %>%
mutate(epa0 = ifelse(
### pos_changes_w is -1 if possession changes at the end of the play and it's not a score
pos_changes_w == -1 & game_id == lead(game_id, default=""),
-lead(ep0) - ep0,
epa0
))
# ### check
# View(data0 %>% select(game_id, half, qtr, posteam, drive, yardline_100, ydstogo,
# down, passer_player_name, rusher_player_name,
# pts_of_play, pos_changes_w, ep0, epa0))
### create more helpful columns
data0 =
data0 %>%
group_by(game_id, posteam) %>%
mutate(
qb_name = zoo::na.locf(passer_player_name, na.rm = F),
qb_name = zoo::na.locf(passer_player_name, fromLast = T, na.rm = F)
) %>%
ungroup() %>%
group_by(posteam) %>%
mutate(
kicker_name = zoo::na.locf(kicker_player_name, fromLast = T, na.rm = F),
kicker_name = zoo::na.locf(kicker_name, na.rm = F),
punter_name = zoo::na.locf(punter_player_name, fromLast = T, na.rm = F),
punter_name = zoo::na.locf(punter_name, na.rm = F),
) %>%
ungroup() %>%
relocate(qb_name, .after=passer_player_name) %>%
relocate(kicker_name, .after=kicker_player_name) %>%
relocate(punter_name, .after=punter_player_name) %>%
mutate(offensive_player_name = case_when(
!sapply(passer_player_name, is.na) ~ passer_player_name,
!sapply(rusher_player_name, is.na) ~ rusher_player_name,
TRUE~NA_character_
)) %>%
mutate(qb_play = replace_na(offensive_player_name == qb_name, FALSE)) %>%
mutate(pass_or_rush = case_when(
replace_na(pass_attempt == 1, FALSE) ~ "pass",
replace_na(rush_attempt == 1, FALSE) ~ "run",
TRUE~NA_character_
)) %>%
mutate(row_idx = row_number()) %>% relocate(row_idx, .before = game_id)
# ### check
# View(
# data0 %>%
# filter(row_idx %in% 709363:(709363+2000)) %>%
# select(
# game_id, row_idx, play_id, posteam, defteam,
# passer_player_name, rusher_player_name, offensive_player_name, qb_name, qb_play,
# kicker_player_name, kicker_name, punter_player_name, punter_name
# )
# )
# View(data0 %>% #filter(row_number() %in% 10000:10200) %>%
# select(
# game_id, play_id, season, posteam, defteam, yardline_100, down, ydstogo, epa0,
# offensive_player_name, pass_or_rush,
# # passer_player_name, pass_attempt, rusher_player_name, rush_attempt,
# ))
##############################################
#### Offensive Quality of the Quartberack ####
##############################################
###
data1a = data0
all_qb_names = unique( (data1a %>% drop_na(passer_player_name))$passer_player_name )
# j=737
### quaterback quality
qbq_ot_0 = tibble()
for (j in 1:length(all_qb_names)) {
if (j %% 10 == 0) print( paste0("qbq_ot_0 progress: QB j = ", j, " of n = ", length(all_qb_names), "; alpha = ", alpha_op, "; gamma = ", gamma_qb) )
player_j = all_qb_names[j]
data_player_j = data1a %>% filter(qb_play & replace_na(offensive_player_name, "") == player_j) ### all plays in which the QB was the passer or rusher
nrow(data_player_j)
szn_begins_player_j = c(1, diff(data_player_j$season))
# View(tibble(season = data_player_j$season, szn_begins = szn_begins_player_j)) ### check
epa0_player_j = data_player_j$epa0
qbq_ot_0_j_sum = numeric(length(epa0_player_j))
qbq_ot_0_j_mean = numeric(length(epa0_player_j))
### we have no information prior to the player's first play
qbq_ot_0_j_sum[1] = 0
qbq_ot_0_j_mean[1] = 0
n_j = N0_op
if (nrow(data_player_j) > 1) {
for (k in 2:nrow(data_player_j)) {
SBM_k = ifelse(szn_begins_player_j[k] == 1, gamma_qb, 1) # szn-begins multiplier
if (!is.na(epa0_player_j[k-1])) {
qbq_ot_0_j_sum[k] = SBM_k * alpha_op * qbq_ot_0_j_sum[k-1] + epa0_player_j[k-1]
qbq_ot_0_j_mean[k] = SBM_k * alpha_op*(1 - 1/n_j)*qbq_ot_0_j_mean[k-1] + 1/n_j*epa0_player_j[k-1]
n_j = n_j + 1
} else {
qbq_ot_0_j_sum[k] = SBM_k * qbq_ot_0_j_sum[k-1]
qbq_ot_0_j_mean[k] = SBM_k * qbq_ot_0_j_mean[k-1]
}
}
}
data_player_j$qbq_ot_0_sum = qbq_ot_0_j_sum
data_player_j$qbq_ot_0_mean = qbq_ot_0_j_mean
## View(data_player_j)
qbq_ot_0 = bind_rows(
qbq_ot_0,
data_player_j %>% select(row_idx, offensive_player_name, all_of(starts_with("qbq_ot_0")))
)
}
#############################################################################
#### Offensive Quality of the Offensive Team (for non-Quarterback plays) ####
#############################################################################
all_offteamnames = sort(unique( (data1a %>% drop_na(posteam))$posteam ))
# j = 17
oq_ot_0 = tibble()
for (j in 1:length(all_offteamnames)) {
print( paste0("oq_ot_0 progress: team j = ", j, " of n = ", length(all_offteamnames), "; beta_o = ", beta_o, "; gamma_o = ", gamma_o) )
team_j = all_offteamnames[j]
data_team_j = data1a %>% filter(posteam == team_j & !qb_play & !is.na(pass_or_rush))
## View(data_team_j)
szn_begins_team_j = c(1, diff(data_team_j$season))
# View(tibble(season = data_team_j$season, szn_begins = szn_begins_team_j)) ### check
epa0_team_j = data_team_j$epa0
pass_or_rush_team_j = data_team_j$pass_or_rush
pass_play_team_j = ifelse(is.na(pass_or_rush_team_j), FALSE, pass_or_rush_team_j=="pass")
oq_ot_0_total_j_sum = numeric(length(epa0_team_j))
oq_ot_0_total_j_mean = numeric(length(epa0_team_j))
oq_rot_0_total_j_sum = numeric(length(epa0_team_j))
oq_rot_0_total_j_mean = numeric(length(epa0_team_j))
### base case
oq_ot_0_total_j_sum[1] = 0
oq_ot_0_total_j_mean[1] = 0
oq_rot_0_total_j_sum[1] = 0
oq_rot_0_total_j_mean[1] = 0
n_j = N0_ot
nr_j = N0_ot
if (nrow(data_team_j) > 1) {
for (k in 2:nrow(data_team_j)) {
if (k %% 500 == 0) print( paste0("oq_ot_0 progress: team j = ", j, " of n = ", length(all_offteamnames),
"; play k = ", k, " of n = ", nrow(data_team_j),
"; beta = ", beta_o, "; gamma = ", gamma_o) )
SBM_k = ifelse(szn_begins_team_j[k] == 1, gamma_o, 1) # szn-begins multiplier
if (!is.na(epa0_team_j[k-1]) & !is.na(pass_or_rush_team_j[k-1])) {
oq_ot_0_total_j_sum[k] = SBM_k * beta_o * oq_ot_0_total_j_sum[k-1] + epa0_team_j[k-1]
oq_ot_0_total_j_mean[k] = SBM_k*beta_o*(1 - 1/n_j)*oq_ot_0_total_j_mean[k-1] + 1/n_j*epa0_team_j[k-1]
n_j = n_j + 1
if (!pass_play_team_j[k-1]) {
oq_rot_0_total_j_sum[k] = SBM_k * beta_o * oq_rot_0_total_j_sum[k-1] + epa0_team_j[k-1]
oq_rot_0_total_j_mean[k] = SBM_k*beta_o*(1 - 1/nr_j)*oq_rot_0_total_j_mean[k-1] + 1/nr_j*epa0_team_j[k-1]
nr_j = nr_j + 1
} else {
oq_rot_0_total_j_sum[k] = SBM_k * oq_rot_0_total_j_sum[k-1]
oq_rot_0_total_j_mean[k] = SBM_k * oq_rot_0_total_j_mean[k-1]
}
} else {
oq_ot_0_total_j_sum[k] = SBM_k * oq_ot_0_total_j_sum[k-1]
oq_ot_0_total_j_mean[k] = SBM_k * oq_ot_0_total_j_mean[k-1]
oq_rot_0_total_j_sum[k] = SBM_k * oq_rot_0_total_j_sum[k-1]
oq_rot_0_total_j_mean[k] = SBM_k * oq_rot_0_total_j_mean[k-1]
}
}
}
###
data_team_j$oq_ot_0_total_sum = oq_ot_0_total_j_sum
data_team_j$oq_ot_0_total_mean = oq_ot_0_total_j_mean
data_team_j$oq_rot_0_total_sum = oq_rot_0_total_j_sum
data_team_j$oq_rot_0_total_mean = oq_rot_0_total_j_mean
## View(data_team_j)
oq_ot_0 = bind_rows(
oq_ot_0,
data_team_j %>% select(row_idx, posteam, all_of(starts_with("oq_ot_0")), all_of(starts_with("oq_rot_0")))
)
}
###################################
#### Save OQ_OP, OQ_OT metrics ####
###################################
### save the oq, dq metrics
data2a = data1a %>% left_join(oq_ot_0) %>% left_join(qbq_ot_0)
data2a = data2a %>%
group_by(season, posteam) %>%
mutate(
qbq_ot_0_sum = zoo::na.locf(qbq_ot_0_sum, na.rm = F),
qbq_ot_0_mean = zoo::na.locf(qbq_ot_0_mean, na.rm = F),
qbq_ot_0_sum = replace_na(qbq_ot_0_sum, 0),
qbq_ot_0_mean = replace_na(qbq_ot_0_mean, 0),
oq_rot_0_total_sum = zoo::na.locf(oq_rot_0_total_sum, na.rm = F),
oq_rot_0_total_mean = zoo::na.locf(oq_rot_0_total_mean, na.rm = F),
oq_rot_0_total_sum = replace_na(oq_rot_0_total_sum, 0),
oq_rot_0_total_mean = replace_na(oq_rot_0_total_mean, 0),
)
sum(is.na(data2a$qbq_ot_0_sum))
sum(is.na(data2a$oq_rot_0_total_sum))
# ### check OQ_OP, OQ_OT, QBQ, RBQ
# dim(data1a)
# dim(data2a)
# View(data2a %>% filter(posteam=="ARI") %>%
# mutate(rrr = as.numeric(!qb_play & posteam=="ARI" &!is.na(pass_or_rush))) %>%
# select(
# game_id, play_id, defteam, yardline_100, down, ydstogo,
# season, posteam, offensive_player_name, pass_or_rush, epa0,
# oq_ot_0_total_sum,
# passer_player_name, qb_play, qbq_ot_0_sum, oq_rot_0_total_sum, rrr
# # all_of(starts_with("oq_op_0")), all_of(starts_with("oq_ot_0"))
# ))
# View(data2a %>% filter(row_number() <= 2000) %>%
# select(
# game_id, play_id, defteam, yardline_100, down, ydstogo,
# season, posteam, offensive_player_name, pass_or_rush, epa0,
# oq_ot_0_total_sum, passer_player_name, qbq_ot_0_sum, oq_rot_0_total_sum
# # all_of(starts_with("oq_op_0")), all_of(starts_with("oq_ot_0"))
# ))
# # hist(data2a$oq_op_0_mean)
# # hist(data2a$oq_op_0_sum)
# # hist(data2a$oq_ot_0_total_mean)
# hist(data2a$oq_ot_0_total_sum)
# # data2a %>% filter(rusher_player_name=="T.Gurley" & season==2018) %>%
# # drop_na(all_of(starts_with("oq_op_0"))) %>% drop_na(all_of(starts_with("oq_ot_0"))) %>%
# # mutate(i = row_number()) %>% ggplot() +
# # # geom_line(aes(x=i,y=oq_op_0_mean))
# # geom_line(aes(x=i,y=oq_op_0_sum))
# data2a %>% filter(posteam=="LA") %>%
# drop_na(all_of(starts_with("oq_op_0"))) %>% drop_na(all_of(starts_with("oq_ot_0"))) %>%
# mutate(i = row_number()) %>% ggplot() +
# # geom_line(aes(x=i,y=oq_ot_0_total_mean))
# geom_line(aes(x=i,y=oq_ot_0_total_sum))
#################################################
#### Defensive Quality of the Defensive Team ####
#################################################
all_defteamnames = sort(unique( (data2a %>% drop_na(defteam))$defteam ))
# j = 17
dq_dt_0 = tibble()
for (j in 1:length(all_defteamnames)) {
print( paste0("dq_dt_0 progress: team j = ", j, " of n = ", length(all_defteamnames), "; beta = ", beta, "; gamma = ", gamma) )
team_j = all_defteamnames[j]
data_team_j = data2a %>% filter(defteam == team_j) %>% select(row_idx, season, defteam, pass_or_rush, epa0)
## View(data_team_j)
szn_begins_team_j = c(1, diff(data_team_j$season))
# View(tibble(season = data_team_j$season, szn_begins = szn_begins_team_j)) ### check
epa0_team_j = data_team_j$epa0
pass_or_rush_team_j = data_team_j$pass_or_rush
### initialize
N_j = length(epa0_team_j)
dq_dt_0_againstPass_j_sum = numeric(N_j)
dq_dt_0_againstRun_j_sum = numeric(N_j)
dq_dt_0_total_j_sum = numeric(N_j)
dq_dt_0_againstPass_j_mean = numeric(N_j)
dq_dt_0_againstRun_j_mean = numeric(N_j)
dq_dt_0_total_j_mean = numeric(N_j)
### base case
dq_dt_0_againstPass_j_sum[1] = 0
dq_dt_0_againstRun_j_sum[1] = 0
dq_dt_0_total_j_sum[1] = 0
dq_dt_0_againstPass_j_mean[1] = 0
dq_dt_0_againstRun_j_mean[1] = 0
dq_dt_0_total_j_mean[1] = 0
### counters
n_againstPass_j = N0_dt_againstPass
n_againstRun_j = N0_dt_againstRun
n_total_j = N0_dt_total
for (k in 2:nrow(data_team_j)) {
# if (k %% 500 == 0) print( paste0("dq_dt_0 progress: team j = ", j, " of n = ", length(all_defteamnames),
# "; play k = ", k, " of n = ", nrow(data_team_j),
# "; beta = ", beta, "; gamma = ", gamma) )
SBM_k = ifelse(szn_begins_team_j[k] == 1, gamma, 1) # szn-begins multiplier
epa0_prevPlay = epa0_team_j[k-1]
passOrRush_prevPlay = pass_or_rush_team_j[k-1]
# currPlay_isPass = !is.na(epa0_prevPlay) & !is.na(pass_or_rush_team_j[k]) & pass_or_rush_team_j[k] == "pass"
# currPlay_isRush = !is.na(epa0_prevPlay) & !is.na(pass_or_rush_team_j[k]) & pass_or_rush_team_j[k] == "run"
prevPlay_isPass = !is.na(epa0_prevPlay) & !is.na(passOrRush_prevPlay) & passOrRush_prevPlay == "pass"
prevPlay_isRush = !is.na(epa0_prevPlay) & !is.na(passOrRush_prevPlay) & passOrRush_prevPlay == "run"
if (prevPlay_isPass) { ### then update the Pass Def metrics for the start of the current play
dq_dt_0_againstPass_j_sum[k] = SBM_k * beta * dq_dt_0_againstPass_j_sum[k-1] + epa0_prevPlay
dq_dt_0_againstPass_j_mean[k] = SBM_k*beta*(1 - 1/n_againstPass_j)*dq_dt_0_againstPass_j_mean[k-1] +
1/n_againstPass_j*epa0_prevPlay
n_againstPass_j = n_againstPass_j + 1
dq_dt_0_total_j_sum[k] = SBM_k * beta * dq_dt_0_total_j_sum[k-1] + epa0_prevPlay
dq_dt_0_total_j_mean[k] = SBM_k*beta*(1 - 1/n_total_j)*dq_dt_0_total_j_mean[k-1] +
1/n_total_j*epa0_prevPlay
n_total_j = n_total_j + 1
dq_dt_0_againstRun_j_sum[k] = SBM_k * dq_dt_0_againstRun_j_sum[k-1]
dq_dt_0_againstRun_j_mean[k] = SBM_k * dq_dt_0_againstRun_j_mean[k-1]
} else if (prevPlay_isRush) { ### then update the Rush Def metrics for the start of the current play
dq_dt_0_againstRun_j_sum[k] = SBM_k * beta * dq_dt_0_againstRun_j_sum[k-1] + epa0_prevPlay
dq_dt_0_againstRun_j_mean[k] = SBM_k*beta*(1 - 1/n_againstRun_j)*dq_dt_0_againstRun_j_mean[k-1] +
1/n_againstRun_j*epa0_prevPlay
n_againstRun_j = n_againstRun_j + 1
dq_dt_0_total_j_sum[k] = SBM_k * beta * dq_dt_0_total_j_sum[k-1] + epa0_prevPlay
dq_dt_0_total_j_mean[k] = SBM_k*beta*(1 - 1/n_total_j)*dq_dt_0_total_j_mean[k-1] +
1/n_total_j*epa0_prevPlay
n_total_j = n_total_j + 1
dq_dt_0_againstPass_j_sum[k] = SBM_k * dq_dt_0_againstPass_j_sum[k-1]
dq_dt_0_againstPass_j_mean[k] = SBM_k * dq_dt_0_againstPass_j_mean[k-1]
} else {
dq_dt_0_againstRun_j_sum[k] = SBM_k * dq_dt_0_againstRun_j_sum[k-1]
dq_dt_0_againstPass_j_sum[k] = SBM_k * dq_dt_0_againstPass_j_sum[k-1]
dq_dt_0_total_j_sum[k] = SBM_k * dq_dt_0_total_j_sum[k-1]
dq_dt_0_againstRun_j_mean[k] = SBM_k * dq_dt_0_againstRun_j_mean[k-1]
dq_dt_0_againstPass_j_mean[k] = SBM_k * dq_dt_0_againstPass_j_mean[k-1]
dq_dt_0_total_j_mean[k] = SBM_k * dq_dt_0_total_j_mean[k-1]
}
}
### combined defensive quality metric
pass_or_rush_team_j_AA = replace_na(pass_or_rush_team_j, "")
dq_dt_0_combined_j_sum =
(pass_or_rush_team_j_AA == "pass")*dq_dt_0_againstPass_j_sum +
(pass_or_rush_team_j_AA == "run")*dq_dt_0_againstRun_j_sum +
(pass_or_rush_team_j_AA != "pass" & pass_or_rush_team_j_AA != "run")*dq_dt_0_total_j_sum
dq_dt_0_combined_j_mean =
(pass_or_rush_team_j_AA == "pass")*dq_dt_0_againstPass_j_mean +
(pass_or_rush_team_j_AA == "run")*dq_dt_0_againstRun_j_mean +
(pass_or_rush_team_j_AA != "pass" & pass_or_rush_team_j_AA != "run")*dq_dt_0_total_j_mean
###
data_team_j$dq_dt_0_againstRun_sum = dq_dt_0_againstRun_j_sum
data_team_j$dq_dt_0_againstPass_sum = dq_dt_0_againstPass_j_sum
data_team_j$dq_dt_0_total_sum = dq_dt_0_total_j_sum
data_team_j$dq_dt_0_againstRun_mean = dq_dt_0_againstRun_j_mean
data_team_j$dq_dt_0_againstPass_mean = dq_dt_0_againstPass_j_mean
data_team_j$dq_dt_0_total_mean = dq_dt_0_total_j_mean
data_team_j$dq_dt_0_combined_sum = dq_dt_0_combined_j_sum
data_team_j$dq_dt_0_combined_mean = dq_dt_0_combined_j_mean
## View(data_team_j)
dq_dt_0 = bind_rows(
dq_dt_0,
data_team_j %>% select(row_idx, season, defteam, all_of(starts_with("dq_dt_0")))
)
}
############################
#### Save DQ_DT metrics ####
############################
### save the dq, dt metrics
data2b = data2a %>% left_join(dq_dt_0) %>% ungroup()
sum(is.na(data2b$dq_dt_0_againstRun_sum))
sum(is.na(data2b$dq_dt_0_againstPass_sum))
# ### check dims
# dim(dq_dt_0)
# dim(data2a)
# dim(data2b)
# ### plots
# hist(data2b$dq_dt_0_total_sum)
# data2b %>% filter(posteam=="NYJ") %>% filter(season==2018) %>%
# drop_na(all_of(starts_with("dq_dt_0"))) %>%
# mutate(i = row_number()) %>% ggplot() +
# # geom_line(aes(x=i,y=dq_dt_0_againstPass_mean))
# # geom_line(aes(x=i,y=dq_dt_0_againstPass_sum))
# # geom_line(aes(x=i,y=dq_dt_0_againstRun_mean))
# # geom_line(aes(x=i,y=dq_dt_0_againstRun_sum))
# # geom_line(aes(x=i,y=dq_dt_0_total_mean))
# geom_line(aes(x=i,y=dq_dt_0_total_sum))
# # geom_line(aes(x=i,y=oq_ot_0_total_sum))
# ### check DQ_DT_total
# View(data2b %>% filter(row_number() <= 2000) %>% select(
# row_idx, game_id, play_id, posteam, yardline_100, down, ydstogo,
# season, defteam, epa0, pass_or_rush,
# dq_dt_0_total_sum, #dq_dt_0_total_mean
# ))
# # ### check DQ_DT_againstRun
# # View(data2b %>% filter(row_number() <= 2000) %>% filter(pass_or_rush=="run") %>% select(
# # row_idx, game_id, play_id, posteam, yardline_100, down, ydstogo,
# # season, defteam, epa0, pass_or_rush,
# # dq_dt_0_againstRun_sum, dq_dt_0_againstRun_mean
# # ))
# # ### check DQ_DT_againstPass
# # View(data2b %>% filter(row_number() <= 2000) %>% filter(pass_or_rush=="pass") %>% select(
# # row_idx, game_id, play_id, posteam, yardline_100, down, ydstogo,
# # season, defteam, epa0, pass_or_rush,
# # dq_dt_0_againstPass_sum, dq_dt_0_againstPass_mean
# # ))
# # ### check DQ_DT_combined
# # View(data2b %>% filter(row_number() <= 2000) %>% select(
# # row_idx, game_id, play_id, posteam, yardline_100, down, ydstogo,
# # season, defteam, epa0, pass_or_rush,
# # dq_dt_0_combined_sum, dq_dt_0_againstPass_sum, dq_dt_0_againstRun_sum, dq_dt_0_total_sum
# # # dq_dt_0_combined_mean, dq_dt_0_againstPass_mean, dq_dt_0_againstRun_mean
# # ))
# # ### check DQ_DT_ overall
# # View(data2b %>% filter(row_number() <= 2000) %>%
# # select(
# # row_idx, game_id, play_id, posteam, yardline_100, down, ydstogo,
# # season, defteam, epa0, pass_or_rush,
# # all_of(starts_with("dq_dt_0")))
# # )
#################################################
#### Offensive Quality of the Defensive Team ####
#### Defensive Quality of the Offensive Team ####
#################################################
all_teamnames = sort(unique( (data2b %>% drop_na(defteam))$defteam ))
# j = 17; j = 14; j = 26
oq_dt_0 = tibble()
dq_ot_0 = tibble()
for (j in 1:length(all_teamnames)) {
print( paste0("oq_dt_0 & dq_ot_0 progress: team j = ", j, " of n = ", length(all_teamnames)) )
team_j = all_teamnames[j]
data_team_j = data2b %>% filter(posteam == team_j | defteam == team_j) %>%
select(row_idx, season, posteam, defteam, pass_or_rush,
oq_ot_0_total_sum, dq_dt_0_total_sum, oq_ot_0_total_mean, dq_dt_0_total_mean,
dq_dt_0_againstPass_sum, dq_dt_0_againstRun_sum,
qbq_ot_0_sum, qbq_ot_0_mean, oq_rot_0_total_sum, oq_rot_0_total_mean,
qb_name, kicker_name, punter_name
)
N_j = nrow(data_team_j)
## data_team_j
###############################################################
### team_j==26: PHI
### PHI, PHI, PHI, PHI, PHI, ARI, ARI, ARI, ARI, PHI, PHI, PHI,
### ARI, ARI, ARI, ARI, ARI, PHI, PHI, PHI, PHI, ARI, ARI, ARI,
###############################################################
### 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, team_j_isOnOffense
### 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, team_j_isOnDefense
###
### 0, 0, 0, 0, 0, 5, 5, 5, 5, 0, 0, 0, oq_dt_0_j_idx
### 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, dq_ot_0_j_idx
###############################################################
isOnOffense_j = as.numeric(data_team_j$posteam == team_j)
isOnDefense_j = as.numeric(data_team_j$defteam == team_j)
Off_Becomes_Def_j = diff(isOnOffense_j)
od_switchpoint_idx_j = c(lag((Off_Becomes_Def_j == -1)*1:(N_j-1), default=0), 0)
do_switchpoint_idx_j = c(lag((Off_Becomes_Def_j == 1)*1:(N_j-1), default=0), 0)
oq_dt_0_j_idx = numeric(N_j)
dq_ot_0_j_idx = numeric(N_j)
for (k in 2:N_j) {
# print(k)
if (isOnOffense_j[k] & do_switchpoint_idx_j[k] != 0) {
dq_ot_0_j_idx[k] = do_switchpoint_idx_j[k]
} else if (isOnOffense_j[k]) {
dq_ot_0_j_idx[k] = dq_ot_0_j_idx[k-1]
}
else if (isOnDefense_j[k] & od_switchpoint_idx_j[k] != 0) {
oq_dt_0_j_idx[k] = od_switchpoint_idx_j[k]
} else if (isOnDefense_j[k]) {
oq_dt_0_j_idx[k] = oq_dt_0_j_idx[k-1]
}
}
##############################
dq_ot_0_j_sum = dq_ot_0_j_idx
dq_ot_0_j_sum[dq_ot_0_j_sum != 0] = data_team_j$dq_dt_0_total_sum[dq_ot_0_j_idx]
dq_ot_0_j_mean = dq_ot_0_j_idx
dq_ot_0_j_mean[dq_ot_0_j_mean != 0] = data_team_j$dq_dt_0_total_mean[dq_ot_0_j_idx]
dq_ot_0_j_againstPass_sum = dq_ot_0_j_idx
dq_ot_0_j_againstPass_sum[dq_ot_0_j_againstPass_sum != 0] = data_team_j$dq_dt_0_againstPass_sum[dq_ot_0_j_idx]
dq_ot_0_j_againstRun_sum = dq_ot_0_j_idx
dq_ot_0_j_againstRun_sum[dq_ot_0_j_againstRun_sum != 0] = data_team_j$dq_dt_0_againstRun_sum[dq_ot_0_j_idx]
##############################
oq_dt_0_j_sum = oq_dt_0_j_idx
oq_dt_0_j_sum[oq_dt_0_j_sum != 0] = data_team_j$oq_ot_0_total_sum[oq_dt_0_j_idx]
oq_dt_0_j_mean = oq_dt_0_j_idx
oq_dt_0_j_mean[oq_dt_0_j_mean != 0] = data_team_j$oq_ot_0_total_mean[oq_dt_0_j_idx]
qbq_dt_0_j_sum = oq_dt_0_j_idx
qbq_dt_0_j_sum[qbq_dt_0_j_sum != 0] = data_team_j$qbq_ot_0_sum[oq_dt_0_j_idx]
qbq_dt_0_j_mean = oq_dt_0_j_idx
qbq_dt_0_j_mean[qbq_dt_0_j_mean != 0] = data_team_j$qbq_ot_0_mean[oq_dt_0_j_idx]
oq_rdt_0_j_sum = oq_dt_0_j_idx
oq_rdt_0_j_sum[oq_rdt_0_j_sum != 0] = data_team_j$oq_rot_0_total_sum[oq_dt_0_j_idx]
oq_rdt_0_j_mean = oq_dt_0_j_idx
oq_rdt_0_j_mean[oq_rdt_0_j_mean != 0] = data_team_j$oq_rot_0_total_mean[oq_dt_0_j_idx]
##############################
qb_name_dt_j = oq_dt_0_j_idx
qb_name_dt_j[qb_name_dt_j != 0] = data_team_j$qb_name[oq_dt_0_j_idx]
##########################
# ### check
# isOnOffense_j[1:12]
# Off_Becomes_Def_j[1:12]
# od_switchpoint_idx_j[1:12]
# do_switchpoint_idx_j[1:12]
# oq_dt_0_j_idx[1:12]
# dq_ot_0_j_idx[1:12]
# oq_dt_0_j_sum[1:12]
# dq_ot_0_j_sum[1:12]
##########################
data_team_j$dq_ot_0_sum = dq_ot_0_j_sum
data_team_j$dq_ot_0_mean = dq_ot_0_j_mean
data_team_j$dq_ot_0_againstPass_sum = dq_ot_0_j_againstPass_sum
data_team_j$dq_ot_0_againstRun_sum = dq_ot_0_j_againstRun_sum
data_team_j$oq_dt_0_sum = oq_dt_0_j_sum
data_team_j$oq_dt_0_mean = oq_dt_0_j_mean
data_team_j$qbq_dt_0_sum = qbq_dt_0_j_sum
data_team_j$qbq_dt_0_mean = qbq_dt_0_j_mean
data_team_j$oq_rdt_0_sum = oq_rdt_0_j_sum
data_team_j$oq_rdt_0_mean = oq_rdt_0_j_mean
data_team_j$qb_name_dt = qb_name_dt_j
data_team_j_off = data_team_j %>% filter(posteam == team_j) %>% select(
row_idx, posteam, all_of(starts_with("dq_ot_0"))
)
data_team_j_def = data_team_j %>% filter(defteam == team_j) %>% select(
row_idx, defteam, all_of(starts_with("oq_dt_0")), all_of(starts_with("qbq_dt_0")),
all_of(starts_with("oq_rdt_0")), qb_name_dt
)
oq_dt_0 = bind_rows(oq_dt_0, data_team_j_def)
dq_ot_0 = bind_rows(dq_ot_0, data_team_j_off)
}
###################################
#### Save OQ_DT, DQ_OT metrics ####
###################################
### save the oq, dq metrics
data2c = data2b %>% left_join(oq_dt_0) %>% left_join(dq_ot_0)
sum(is.na(data2c$qbq_dt_0_sum))
sum(is.na(data2c$oq_rdt_0_sum))
sum(is.na(data2c$dq_ot_0_againstRun_sum))
sum(is.na(data2c$dq_ot_0_againstPass_sum))
# ### check dims
names(data2c)
# dim(data2b)
# dim(data2c)
# ### check OQ_DT
# View(data2c %>% filter(100000 <= row_number() & row_number() <= 100000+2000) %>%
# select(
# row_idx, game_id, play_id, yardline_100, down, ydstogo,
# # pass_or_rush,
# season, pass_or_rush, posteam, defteam, passer_player_name, epa0,
# dq_dt_0_total_sum, dq_ot_0_sum,
# oq_ot_0_total_sum, oq_dt_0_sum,
# oq_rot_0_total_sum, oq_rdt_0_sum,
# qb_name, qb_name_dt, qbq_ot_0_sum, qbq_dt_0_sum,
# fg_made, kicker_name, kicker_name_dt, kq0_sum, kq0_dt_sum,
# punt_attempt, punter_name, punter_name_dt, pq0_sum, pq0_dt_sum
# # oq_ot_0_total_mean, oq_dt_0_mean, dq_dt_0_total_mean, dq_ot_0_mean
# ))
#################################
#### Save our OQ, DQ metrics ####
#################################
### ### remove rows that we won't use, to save space
### data5a = data2c %>% select(-all_of(ends_with("_mean")))
sum(is.na(data2c$qbq_ot_0_sum))
sum(is.na(data2c$oq_rot_0_total_sum))
sum(is.na(data2c$dq_dt_0_againstRun_sum))
sum(is.na(data2c$dq_dt_0_againstPass_sum))
sum(is.na(data2c$qbq_dt_0_sum))
sum(is.na(data2c$oq_rdt_0_sum))
sum(is.na(data2c$dq_ot_0_againstRun_sum))
sum(is.na(data2c$dq_ot_0_againstPass_sum))
dataTQ = data2c
print("we have successfully created the Team Quality metrics and added them to the dataset `dataTQ`")