-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_finetune_from_directory.py
131 lines (106 loc) · 5.14 KB
/
train_finetune_from_directory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os.path
import numpy as np
from keras import backend as K
from keras import layers
from keras.applications.inception_v3 import InceptionV3
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, CSVLogger, ModelCheckpoint
from keras.constraints import maxnorm
from keras.layers import Input, Dense, Flatten, Dropout
from keras.models import Model
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
# ---------------------------------------- Params ---------------------------------------------------------------
img_width, img_height = 224, 224
train_data_dir = '../Full_data/train'
validation_data_dir = '../cropped_data/val'
nb_train_samples = 1500
nb_validation_samples = 1500
nb_epoch = 100
batch_size = 64
input_tensor = Input(shape=(img_width, img_height, 3))
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
# ======================================= Model Definitions ============================================================
base_model = InceptionV3(weights='imagenet', include_top=False)
# base_model = applications.VGG16(weights='imagenet', include_top=False,input_tensor=input_tensor)
# base_model = applications.VGG19(weights='imagenet', include_top=False,input_tensor=input_tensor)
# base_model = applications.ResNet50(weights='imagenet', include_top=False, input_tensor=input_tensor, pooling='avg')
# base_model = Xception(weights='imagenet', include_top=False,input_tensor=input_tensor,pooling='avg')
x = base_model.output
x = Flatten()(x) # Res50, vgg16
# x = Dropout(0.75)(x)
# x = GlobalAveragePooling2D()(x) # xception
x = layers.noise.GaussianNoise(.5)(x)
x = Dense(2048, kernel_constraint=maxnorm(2.), activation='relu')(x)
# x = Dropout(0.5)(x)
# x = Dense(4096, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(3, activation='softmax')(x)
inputs = input_tensor
model = Model(inputs, x)
# model.load_weights(trained_weights_path)
# model.load_weights(top_model_weights_path)
# for layer in base_model.layers:
# layer.trainable = False
for layer in model.layers[:18]:
layer.trainable = False
for layer in model.layers[18:]:
layer.trainable = True
print("Model created")
model.summary()
optimizer = Adam(lr=1e-4) # Using Adam instead of SGD to speed up training
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=["accuracy", "mae"])
print("Finished compiling")
print("Building model...")
print('Model loaded.')
for i, layer in enumerate(model.layers):
print(i, layer.name)
# ============================================ Data Process ============================================================
train_datagen = ImageDataGenerator(featurewise_center=False,
featurewise_std_normalization=False,
samplewise_center=False,
samplewise_std_normalization=False,
rescale=1. / 255,
rotation_range=30,
shear_range=0.0,
zoom_range=0.6,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True,
fill_mode='nearest')
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
# ====================================== Training ======================================================================
weights_file = "incepv3/incepv3_0.85.h5"
if os.path.exists(weights_file):
model.load_weights(weights_file)
print("weights loaded.")
out_dir = "incepv3/"
lr_reducer = ReduceLROnPlateau(monitor='val_loss', factor=np.sqrt(0.1), cooldown=10, patience=10, min_lr=0.5e-6)
early_stopper = EarlyStopping(monitor='val_acc', min_delta=0.0001, patience=20)
model_checkpoint = ModelCheckpoint(weights_file, monitor="acc", save_best_only=True, mode='auto')
csv_logger = CSVLogger('training_log.csv')
callbacks = [lr_reducer, model_checkpoint, csv_logger]
class_weight = {0: 3.2,
1: 1.0,
2: 1.8}
history = model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=nb_epoch,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
verbose=1,
class_weight=class_weight,
callbacks=callbacks)
val_acc = history.history['val_acc'][-1]
model.save('flow_incepv3_%s.h5' % val_acc)