-
Notifications
You must be signed in to change notification settings - Fork 390
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add notebook that shows how to use skorch with optuna #724
Conversation
Check out this pull request on See visual diffs & provide feedback on Jupyter Notebooks. Powered by ReviewNB |
Optuna already provides a skorch callback, which is essentially the same that I also implemented.
Update: optuna already provides a skorch callback, which is almost exactly the same that I used. I changed the notebook to use this instead. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It's nice to see how easy it is to integrate with optuna.
notebooks/optuna-example.ipynb
Outdated
" \"\"\"Model definition and hyper-parameter setting\n", | ||
"\n", | ||
" We set the number of units, the optimizer, the learning rate, and the number of epochs.\n", | ||
" \n", | ||
" To make this work efficiently with optuna, add the\n", | ||
" `SkorchPruningCallback <https://optuna.readthedocs.io/en/stable/reference/generated/optuna.integration.OptunaSearchCV.html?highlight=optuna.integration.OptunaSearchCV>`\n", | ||
" from the optuna library.\n", | ||
"\n", | ||
" \"\"\"\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Given this is a notebook, can we pull this out into an markdown block above this code block?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
done
notebooks/optuna-example.ipynb
Outdated
"outputs": [], | ||
"source": [ | ||
"def objective(trial):\n", | ||
" \"\"\"Train the model and return the value to be maximized\"\"\"\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
A markdown description before defining this function?
Next, we define an objective function that trains a
NeuralNetClassifier
and returns the value to be maximized.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
done
" model = define_model(trial)\n", | ||
" X, y = get_data()\n", | ||
" model.fit(X, y)\n", | ||
" accuracy = model.history[-1, METRIC_NAME]\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Would it be cleaner to directly place the metric name here?
" accuracy = model.history[-1, METRIC_NAME]\n", | |
" accuracy = model.history[-1, 'valid_acc']\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I would leave it as is. The idea is to set all the constants at the beginning of the notebook. This way, if I want to change the them (say, optimizing valid_loss
instead), I don't need to chase through the notebook to replace all instances.
- add more markdown descriptions - set number of trials as constant - increase image size and change order
@thomasjpfan I improved the notebook by adding more descriptions, as you correctly pointed out. Now it should be more accessible for users who don't already know optuna. Furthermore, I increased the image size, which was quite small originally. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Otherwise LGTM
notebooks/optuna-example.ipynb
Outdated
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtoAAAGHCAYAAACOFvWHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeVxU9f4/8NeZGbZhAJkZBFncUHHJXMLlKioIbplK30yvLd9Mr1lZWZk3t1wyS01LM/Wm8tVuy/1a/TIrywXzImpu9cU1FUxTVllkZxiYc35/EHMdWRyWWXk9Hw8eeT5zPufzPjMf6M3hfT5HkCRJAhERERERNSuZrQMgIiIiInJGTLSJiIiIiCyAiTYRERERkQUw0SYiIiIisgAm2kREREREFsBEm4iIiIjIAphoExHdJTIyEn/729/s5jj2Mk5D7NixAwqFwtZhNLupU6ciJibG1mEQkYNgok1EDiUrKwsvvvgi2rdvD1dXV/j5+WHixIlISkpq8LHeeusttG/fvkb7119/jffee6/JsTbXcapZOt57uX79OgRBwJEjR2q8tnTpUnTq1Mm4PXnyZKSlpZl97JiYGEydOrU5wmy0f//73xAEwfil0WgQFRWFxMTEJh23U6dOWLp0afMESUQOhYk2ETmMmzdvIjw8HMeOHcPmzZuRkpKCPXv2wMXFBQMHDsTevXubZRy1Wg1vb2+7OY69jNMQHh4e8Pf3t/q4kiShoqKiScf49ddfkZGRgYMHD8LDwwNjxozB9evXmydAImpRmGgTkcOYNWsWKioqcOjQIYwZMwZt27ZF//798a9//QvDhw/H1KlTUVZWBuA/V1g///xzdOzYEe7u7oiJicG1a9cAVJU2vPHGG/jjjz+MVzCrrzreXYoRGRmJ6dOnY9GiRWjdujVatWqFhQsXQhRFvPnmm/D394efnx8WLlxoEu+dx7n7amn1V/UVakmSMGPGDISGhsLDwwMdO3bEggULUF5e3uB4KyoqMG/ePAQFBcHV1RXdu3fH559/bhKbIAjYtGkTnnzySXh5eSEkJASrV69ung8KNUtHCgsL8fTTTyMgIABubm4ICQnBq6++CqCqHOPgwYP4+OOPjef273//GwBw+fJljB07FiqVCiqVCuPGjUNKSkqNcQ4dOoQ+ffrAzc0Nmzdvhkwmw7Fjx0xiSkhIgEwmw++//15v7H5+fggICEDv3r2xdetWlJSUYN++fbXuK0kS1qxZg44dO8LV1RWhoaFYt26d8fXIyEhcvXoVy5YtM54bk3ailoOJNhE5hNu3b2PPnj144YUXar16O3/+fGRlZeHAgQPGtoyMDGzatAk7d+5EYmIiioqKEBsbC0mSMHnyZLz++usIDg5GRkYGMjIy8Nprr9U5/ldffYWKigocOXIE7733Ht5++2089NBDKC4uRmJiItasWYO3334bP/74Y639Bw0aZBwnIyMDFy5cQGBgIKKiogBUJWz+/v74/PPP8dtvv2HdunXYvn073n77bQBoULwLFizA1q1bsW7dOpw/fx5PPPEEnnjiCRw8eNBkv2XLlmHo0KFISkrC3Llz8frrr+PQoUP1fxCNtGjRIvz666/YvXs3kpOTsXPnTnTr1g0AsH79egwZMgSTJk0yntugQYNQVlaGkSNHQqfTISEhAQkJCSguLsbo0aOh1+uNxxZFEX//+9+xdu1aXLp0CVOmTMGIESOwdetWkxi2bduG6OhodOzY0ey4PTw8AKDOq+SbNm3CG2+8gXnz5uHChQuYO3cu5s2bh7i4OABVZT3t27fHnDlzjOcWEhLSoPeOiByYRETkAE6cOCEBkL7++utaX8/NzZUASKtXr5YkSZKWLFkiAZCSk5ON+1y+fFkCIB04cECSJElavny51K5duxrHGjZsmDR9+nST7V69epns0717d+m+++4zabv//vulOXPm1Hmcanq9XoqMjJQiIiIknU5X5zm/9957UqdOnYzb5sRbUlIiubq6Shs3bjTZJzY2VoqKijJuA5BefPFFk33CwsKkefPm1RnPtWvXJACSh4eH5OnpafLl4uIihYaGGvfdvn27JJfLjdvjx4+XnnrqqTqPHR0dXeP1bdu2SR4eHlJ2draxLTMzU3J3d5c+/vhj4zgApMOHD5v0/X//7/9JSqVSys/PlyRJkm7fvi15eHhIX3zxRZ0xHDp0SAIg3bx5U5IkSSosLJT+9re/SQqFQjp37pwkSZL01FNPSdHR0cY+wcHB0ty5c02O8/LLL0sdOnQwboeGhkpLliypc1wicl68ok1EDkGSpHpfFwShRpufn5/JDXpdunSBVqvFxYsXGzx+r169TLYDAgJw//3312i7devWPY/13HPP4ebNm9i1axfc3NyM7Vu3bsWAAQPg7+8PlUqF+fPn448//mhQnCkpKdDr9Rg6dKhJ+7Bhw3DhwgWTtt69e5tsBwUFISsr655jbN++HUlJSSZfzz77bL19nn/+eXz11Ve47777MHv2bPz4448QRbHePhcuXED37t2h1WqNbf7+/ggLC6txLv369TPZHj9+PHx8fIwlM59++ilUKhUmTJhwz/MLCwuDSqWCj48P9u3bh3/+85+47777auxXWFiI1NTUWt/r69evo7S09J5jEZFzY6JNRA6hc+fOkMlkOH/+fK2vV7eHhYXVe5x7Jex1cXFxMdkWBKHWtnslj6tXr8bXX3+NPXv2mCSQX375JWbNmoXJkyfjhx9+wP/93/9h8eLFjb6x7+5fPCRJqtHm6ura4PiBqoS8U6dOJl9qtbrePqNGjcKNGzewcOFC6HQ6PPHEExg+fDgMBkODzqO2c5HL5XB3dzfZR6FQYPr06cbykW3btmHq1Kk1zrk2+/btw5kzZ5CTk4MbN25gypQpDYqxsXOMiJwPE20icghqtRpjxozBxo0bUVhYWOP1t99+G/7+/hgxYoSxLTs7G1evXjVuX7lyBbm5ucbaYFdX13smes3pm2++weLFi/H111/X+IXg8OHD6NOnD1599VU88MAD6Ny5c42b5syJt1OnTnBzc0NCQkKN4/fo0aNZzqOx1Go1pkyZgo8++gh79uxBQkKC8a8LtZ1bjx49cOHCBeTk5BjbsrKycOXKFbPOZcaMGThz5gz+8Y9/4MyZM2avNd6+fXuEhobe85cHb29vBAcH1/ped+jQAUqlss5zI6KWgYk2ETmMjRs3Qi6XY/jw4di7dy9u3ryJU6dO4bHHHsOhQ4ewY8cO481rAKBUKvH000/jl19+wenTp/HUU0+hZ8+exgeOdOjQAZmZmfj555+Rk5Nj0T/1X7hwAU888QSWLl2Krl27IjMzE5mZmcjOzgZQdSX+3Llz2L17N65evYr169fj66+/NjmGOfEqlUq89NJLeOONN/Dll18iOTkZb7/9Nnbv3o0FCxZY7PzuZeHChfj6669x+fJlJCcn47PPPoNKpULbtm0BVJ3bL7/8gqtXryInJwcVFRV47LHH4Ofnh8mTJ+PXX3/FL7/8gr/+9a8ICgrC5MmT7zlm27ZtMXr0aMyePRuRkZHo0qVLs5/X/PnzsWHDBmzduhXJycn46KOPsHnzZpP3ukOHDjh69Chu3LiBnJwcs/5qQETOgYk2ETmMdu3a4fTp0xgwYABmzpyJ0NBQjBkzBuXl5fj5558xevRok/3btGmDZ555Bo888ggGDx4MDw8P7Nq1y/in/tjYWDz66KMYO3Ys/Pz8mnV5u7udOnUKJSUlmD9/Ptq0aWP8qq4tnjlzJp588kk8/fTT6NOnD06cOFHjISfmxrtixQrMmDEDL7/8Mnr06IFPP/0Un376KaKjoy12fvfi7u6OxYsX44EHHkB4eDjOnj2LH3/8ET4+PgCAOXPmQKvVolevXvDz88PRo0fh4eGB/fv3w83NDUOHDsWwYcPg6emJvXv3mlUCAgDPPPMM9Ho9nnnmGYuc13PPPYc333wTb7/9Nrp3745Vq1Zh5cqVmD59unGfZcuWoaCgAGFhYfDz88ONGzcsEgsR2R9BYjEZETmhpUuX4tNPPzVZc5lank2bNmHx4sVIS0szufGUiMgaFPfehYiIyLEUFxcjJSUFa9aswQsvvMAkm4hsgqUjRETkdF544QX0798f3bp1w+uvv27rcIiohWLpCBERERGRBfCKNhERERGRBTDRJiIiIiKyACbaREREREQW4NSrjqSnp1t9TK1Wa/IUM2qZOA+Ic4AAzgPiHGgJAgMD63yNV7SJiIiIiCyAiTYRERERkQUw0SYiIiIisgCnrtG+myRJ0Ol0EEURgiBYZIysrCyUl5db5NgtnSRJkMlkcHd3t9jnR0RERNRcrJZoJyUlYfv27RBFEdHR0YiNjTV5vbi4GJs3b0ZWVhZcXFzw3HPPoW3btgCAWbNmwd3dHTKZDHK5HCtXrmxUDDqdDi4uLlAoLHfaCoUCcrncYsdv6SorK6HT6eDh4WHrUIiIiIjqZZVEWxRFxMXFYdGiRdBoNJg/fz7Cw8MRHBxs3GfXrl1o37495s6di7S0NMTFxWHx4sXG15csWQJvb+8mx2HJJJssT6FQ8C8GRERE5BCsUqOdkpKCgIAA+Pv7Q6FQYNCgQTh16pTJPqmpqejZsycAICgoCNnZ2cjPz2/WOFhu4Bz4ORIREZEjsEqinZeXB41GY9zWaDTIy8sz2addu3Y4ceIEgKrEPDs722SfFStW4PXXX0d8fLw1QraYkJAQjBgxAjExMRg1alSNXzjMtXXrVpSVldVoX7t2Ld555x2TtvPnz2PYsGH1Hm/ixIk4c+ZMo2IhIiIiopqsUkchSVKNtruvSsbGxmLHjh2YO3cu2rZtiw4dOkAmq/o9YPny5VCr1SgoKMBbb72FwMBAdO/evcYx4+PjjYn4ypUrodVqTV7PyspqUOlIRcpVVBw+DDErCzJ/f7gMHQqXTqH37FffGO7u7jh06BAA4NChQ1i1ahW++eYbs2OqFhcXh0mTJsHLy8uk/ZFHHsGUKVPwxhtvGNu+++47PPLII/XGJQgC5HK5Q5TWuLm51fhs7Y1CobD7GMmyOAcI4DwgzoGWzipZlUajQW5urnE7NzcXvr6+JvsolUo8//zzAKoS8xdeeAGtW7cGAKjVagCAj48P+vXrh5SUlFoT7ZiYGMTExBi3734SU3l5udk3KlZevQr9F19CUKkAjQaGggJU/utfMEx6FIrQupNthUKBysrK+o/95+v5+fnw9vY2bm/evBnfffcd9Ho9Ro8ejddeew2lpaWYOXMmMjIyIIoiZs+ejZycHGRmZuK//uu/4Ovri6+++sp47Pbt28Pb2xsnT55E3759AQDffvstPvvsM1RWVmLevHk4c+YMdDodxo4di9deew1A1XtuMBhQWVmJzp07Izk5GQDw/fffIz4+HuvWrUNubi7mzZuHtLQ0AMCyZcvQr18/s97P5lReXm73T9nik8CIc4AAzgPiHGgJ6nsypFUS7dDQUGRkZODWrVtQq9U4duwYXnrpJZN9SkpK4ObmBoVCgYMHD6Jbt25QKpXQ6XSQJAkeHh7Q6XQ4e/YsJk6c2OSYKk6ehHRX+YrJ60eOQtLpIJSUGNsknQ7l23dAjBhcax9BrYZi0KB6x9XpdBgxYgTKy8tx69YtfPHFFwCAhIQEXLt2DXv27IEkSZg6dSqOHz+O3NxcBAQE4JNPPgEAFBYWwtvbG1u2bMGXX35p/CXkTrGxsdi9ezf69u2LX375Bb6+vujYsSMA4PXXX4evry8MBgMmT56Mixcv1vpLS20WL16MGTNmoH///khLS8Njjz2GhIQEs/oSERERtTRWSbTlcjmmTZuGFStWQBRFREVFISQkBPv37wcAjBw5Emlpafjwww8hk8kQHByMZ599FgBQUFCANWvWAAAMBgMiIiLQu3dvi8csFRYCd5VlwM2tqr0J3N3dceDAAQDA6dOnMXv2bPz0009ISEhAQkICRo4cCQAoLS3FtWvX0L9/fyxfvhwrVqxATEwMBgwYcM8xxo8fjwkTJmDJkiXYvXs3JkyYYHztu+++w2effQaDwYCsrCwkJyebnWgnJibiypUrxu3i4mIUFxdDpVI15C0gIiIiahGsVpDbt29fYylDteqkEgC6dOmCDz74oEY/f39/vPvuu80ej0v//vW+LmZmQSoqgnBHsi0VFUHo3Bmuo0c3Swzh4eHIy8tDbm6usVzmySefrLHfjz/+iJ9++gnvvPMOhg0bhldeeaXe4wYFBSEkJAQ///wzfvjhB3z77bcAgBs3buCjjz7Cnj170KpVK7z88svQ6XQ1+t9ZP3/nUnqiKOLbb7/lGtZEREREZuAj2OugGBIBqbgYUlERJFGs+m9xMRRDIpptjJSUFBgMBvj6+iIyMhI7d+5EyZ+lKhkZGcZabA8PDzzyyCN49tlnce7cOQCASqVCcXFxnceeMGECli5divbt2xtrh4qKiuDh4QFvb29kZ2cbb8q8m5+fH5KTkyGKIvbu3WtsHzZsGHbs2GHcPn/+fFPfAiIiIiKnZf9LTNiIIjQUmPQoKhOP/GfVkQfH1HsjpDmqa7SBqhsQ161bB7lcjmHDhiE5ORnjx48HUHVz6IYNG3D9+nW89dZbEAQBLi4uxqX7Hn/8cTzxxBNo3bq1yc2Q1caNG4clS5Zg+fLlxrYePXrgvvvuQ1RUFNq2bVvnjYzz58/HU089hcDAQISFhRmT/+XLl2PBggWIiYlBZWUlBgwYgFWrVjXp/SAiIiJyVoJU29p7TiI9Pd1ku7S0FEql0qJjmrPqCDWNNT7HpuJd5sQ5QADnAXEOtAT1rTrC0hEiIiIiIgtg6QgREdUp48wlnPlqH1xzs6HX+KHXxFFo06trvX0qr141KbtTDIloctmdLTnT+VjrXJxtHGtpzPk423vQGPb8HsiXLl261NZBWEpRUZHJdkVFBVxcXCw6pkwmgyiKFh2jpbPG59hUSqUSpaWltg6DbMgZ5kDGmUtI2rADWUUVyJApUV5QhOKTv0DVLhheAbU/6a76YV8AILRqBRQXw/B/SRAC20BWy7r/9q6p52NP88Ban42zjdNU5s6BxpyPo7wHlmQP78HdT+m+E2u0mxlrtC2PNdrkCJxhDux9Yz1y0rKhLi+CW6UeAOBqqICXtxLdxgyttU/FqVOQysshuLkZ26q3XWzwJNmmaur5eKo8UVJccs/9rMFan42zjdNU5s6BxpyPo7wHlnTneyAL8IdMrTEuz+w+9SmrxGDzJ0MSEZHjcc/OhH9JAVylShS4qiAJACR3KCvLIQtsU3sngwGCRm2yHj9UnkBBYd197FkTz8fF2xuyJj7orNlY67NxtnGayOw50JjzcZD3wKLueA8EF9eqNk9PiFlZto3rT0y0iYioBrGwEK0qSlBWqcNl3xCUuFQ9qMpTXwa3QDVcBg+utZ8hOaX2h321bVdnH3vW1PPx1GpRZid/2bDWZ+Ns4zSVuXOgMefjKO+BJdX2HqCkBDJ/f9sFdQeuOmJl6enpePrppzF48GAMGjQIixcvhl5f9SfZnTt3YuHChbX2q15fu6H27t1r8tj0d999F4cPH27Usart3LkTzz//vElbXl4eevbsafIkybu9/PLL+P7775s0NhFZnpiXh4of9yK4RyeUePkCEiBIEjz1ZfAXytFr4qg6+1rjYV/W5EznY61zcbZxrKUx5+Ns70Fj2Pt7wETbiiRJwowZMzB69GgcPXoUiYmJKCkpMeuhL9WPUW+ouxPtuXPnYujQ2msrzfXggw/i8OHDKCsrM7Z9//33GDlyJNzuqBMjIscjZmejYt8+QCZAPe2/0eOVGQgIVKOrrAQBgWr0fnFqvauOKEJD4TrpUQheXpCysyF4ecF10qN2swJAQznT+VjrXJxtHGtpzPk423vQGPb+HrB0pB7pBeXYcjwDOcUV0Kpc8MzANgj0aXwieeTIEbi5uWHy5MkAALlcjqVLl2LgwIF47bXXqsZMT8fjjz+OGzdu4OGHH8arr74KAOjcuTOSk5MBAJs3b8Z3330HvV6P0aNHG/t++eWX+OijjwAA3bp1w3//93/jwIEDOH78ONavX4+tW7di3bp1iImJgVKpxM6dO437Hzt2DB999BE+/vhjJCQkYM2aNdDr9WjXrh3ef/99eHp6Gs/Dy8sLAwcOxP79+zFhwgQAVb8IvPTSSwCA999/HwcOHIBOp0N4eDhWrVplWj8GYMCAAfjxxx+hVqtx5swZLF++HF999RVKS0uxaNEiXLp0CZWVlZgzZw5Gjar76hkRNR9DWjoqDh2CoPSA68iREFQqtGnV6p7L+d1NERpqN/+Taw7OdD7WOhdnG8daGnM+zvYeNIY9vwdMtOuQXlCO2btSkFaoN7ZdyCjB+oc7NTrZvnLlCnr27GnS5uXlhaCgIFy7dg0AkJSUhIMHD8LDwwNjx45FdHQ0evXqZdw/ISEB165dw549eyBJEqZOnYrjx4/D19cXH3zwAXbv3g21Wo3bt2/D19cXI0aMQExMDB566CGTcYcOHYrXX3/duILHt99+i/HjxyMvLw/r16/Hzp07oVQqsXHjRmzZsgWvvPKKSf8JEybgm2++wYQJE5CZmYnff/8dg/+sB5s6dapx/xdffBEHDhzAyJEjzXqP1q9fj8GDB+O9995DQUEBxo4diyFDhtj9KiNEjs7wxx+oOHwYgrcPXEeOgODhYeuQiFqcxlzga+6LgtS8mGjXYcvxDJMkGwDSCvXYcjwDS0e1b9QxJUmqcWX37vYhQ4ZA/ee6j2PGjMHJkydrJNoJCQnGxLW0tBTXrl3DxYsXMXbsWGNfX1/femNRKBSIiorCgQMHMHbsWBw8eBCLFi3Czz//jCtXrhivVFdUVOCBBx6o0T8mJgYLFixAUVERvvvuO4wdOxZyuRxA1dXxzZs3o6ysDPn5+QgLCzM70T58+DAOHDiAf/zjHwCA8vJypKWloXPnzmb1J6KGMyQno+LYz5D5aeESEwPB1dXWIRG1OI25wGeJi4LUvJho1yGnuKL29pLa283RpUsX/PDDDyZtRUVFSE9PR/v27XH27Nkaifjd25Ik4YUXXsCTTz5p0h4XF1drEl+fcePG4eOPP0arVq3Qu3dvqFQqSJKEoUOHYtOmTfX29fDwQGRkJH788Ufs3r0b1c890ul0WLBgAX744QcEBQVh7dq1td4gqVAojA/2ufN1SZKwZcsWdOrUqUHnQkSNU3nhAipPnYYsKBAukZEQ7PxhUETOqjEX+CxxUZCaF2+GrINWVfv/bLSejf+f0JAhQ1BWVoYvv6x6gpHBYMCbb76JSZMmwePPP9MmJibi9u3bKCsrw759+9DvrgXnIyMjsXPnTpSUVC1+n5GRgZycHEREROC7775DXl4eAOD27dsAAJVKZdz3boMGDcK5c+fw2WefYdy4cQCABx54AKdOnTKWspSVleHq1au19o+NjcWWLVuQk5NjvOpdnTSr1WqUlJRgz549tfYNDg7G2bNnAcBkn2HDhmH79u2ofo7S+fPna38ziahJJElC5a//h8pTpyFv3x4uw4czySayocZc4LPERUFqXryiXYdnBrbBhYwSk98Ug7xd8czAxi8ALwgCtm3bhgULFmDdunWQJAnDhw/HvHnzjPv069cPL730Eq5fv46HH37YWDZSfbV62LBhSE5ONi73p1QqsWHDBoSFheGll17CxIkTIZPJcN9992HdunWYMGEC5s6di7i4OGzZssUkHrlcjpiYGHzxxRdYv349AECj0eD999/HrFmzjMsO/v3vf0doLTcZDBs2DC+//DKmTJlijM/HxwePPfYYYmJiEBwcbFL2cqdXX30Vc+bMwYYNG9CnTx9j+8svv4wlS5YgJiYGkiQhODgY//znPxv1ft8p48wlnPlqH1xzs6HX+KHXxFENvsHLkVVevYrKxCMQs7Ig8/eHYkiE3d44Yk8a875V97lVUAC9j0+D+lj687lzHKmiAlAq4TpgABR/GQhBxusudWENLFlDYy7wWeKiIDUvPoK9vv7VP1xLKqD1NO+HqyUewZ6Xl4fRo0fj5MmTzXpcR9XQzzHjzCUkbdiBLMkNpS7uUFbo4C+U33OZsqawp8dvV169Cv0XX0JQqQBPT6CkBFJxsV0tf2SPGvO+3dlH6eeH0uzsBvWx5OdTPQ48PSHm5UG6dQuCUgm3Z5+FSyfOg7rUVgMb5O1qdg2sPf0sINswdw40Zq41dX5S86jvEexMtJtZcyfamZmZmDhxIqZNm4Zp06Y123EdWUM+R0mScHDeauhSM6CQDJBJVXXhbgY9vL1V6D5+uEViVKk8UVxce8mOtVX8/DMknQ6Cu7uxrXrb5S9/sWFk9q0x79udfVxdXaHX6xvUx9xxmnQ+ri5AuR6ywDYQPJQQvLzgPvWpZhvH2Szddx37L9+u0T4yzNesGlgm2tSQOdCYC3yN6UPNq75Em6Ujdi4gIABHjhyxdRgORRJFSLeyYbh5A+KNGwi6dhE5ogtKXdxRIav6c1qFoIC3rgzCHeuDNyeZyguCvfwKW1YGwdvb9GZZFxegsNBi5+8UGvO+3dFHcHWF0MA+Zo/TGHfGFhAAma8akihCzMpqvjGcEGtgyZoCfdwafBNjY/qQ9TDRJodTmleAw+9sNam3DujRCWJ6OsQbNyCmpkLSlQNyGWRt2iAnqCNuFOiR7+ZlPIanvgzyQDX6RFvmiraXVotyO7mKJd68CamoCILXf85fKiqC0LEjXC10/s6gMe+bePMminLz8Us+UF4MuCk88UArwOsefazx+dQ2DkpKIPP3b7YxnBFrYImoKVrU3S9OXCXTYuhLy3D7Ugoy0/OQUukO3bUbuPnOWuS+vwEVPx2C4cZNyAKD4DJsGNwmT4ZrTAw6TZ0MtcwAT30ZBEmCp74M/kI5ek1sGU+cVAyJgFRcDKmoqOpqf1ERpOJiKIZE2Do0u9aY9+12nwE4/VsGMtPzkHa7FJnpeTj9WwZu9xnQrONY63yo6sb4IG/TdcWbemM8EbUc8qXVCyA7oaKiIpNtg8EAQRAgs+Dd9TKZzLg+NDW//IxsZJy5BNnlywgsyYHSUA6DKKGgEmj79BQoBgyAvEN7yHxbQfjzATpeAVqo2gWj5MLybLEAACAASURBVGY6/HX58PDXovfTEy266ohSqURpaanFjt8QMrUaQmAbSJlZkG7dgkythsuDY3gj5D005n1be6YYh0o8EFCah9a6fOS7e+H7kH647hOIyE6tmm0ca50PAV7uCkR08EG+rhI+Hgr0bOOJRSPamV0Da08/C8g2OAecn9edfym8S4sqHXF3d4dOp0N5eXmDH+5iLjc3t1of0EJNI1VUQCosROH+Q9DtS4Sr3AW3lL4odPWETu6KrlIJZPXcjNCmV9cWtZzf3RShoUyoGqGh71tOcQWu+wTiuo/pXFTfo57XWp8P50HjsAaWiBqrRSXagiAYHwxjKbzDvPlIkgQxPQOGy5cg3kwFAOScPocsD19keaqN+3nqy6AP9LNVmERGrOclqsK1x4mqtKhEmxyDVF4OQ0oKDJcvQyosguDuDkXP+yDv0gXBvfsjZ8MOeOrLTNbEbin11mTfLPGgKyJHU9vazhcySri2M7VITLTJbog5OTBcvgzD79cAgwEy/9ZQ9O4NWbt2xnrrNr26Ai9O/c9THgNb3lMeyX4F+rhh/cOdsOV4Bgr0gI8reCWPWpwtxzNMkmwASCvUY8vxDJbgUIvDRJtsSqqshHj9OgyXLkPMyQFcFJB3CoU8LAwytbrWPi293prsW3U9L8vIqKXi2uNE/8FEm2xCLCyE4fIViCnJkMr1EFr5VK0YEtoRgqvrvQ9A5ERYz0rOxJr3KvB7h+wdE22yGkkUIaamVd3cmJYOyATI27aDvGsYBH9/i60EQ2TPWM9KzsZa9yrwe4ccARNtsjiprAyG5GQYLl+BVFICQekBRZ/ekHfuDEGptHV4RDbFelZyNnfeq5BTUgGtp2WuNPN7hxwBE22yCEmSIN26VXVz4x9/AAYRssA2UPTvB1lwsPHmRqKWjvWs5IyssfY4v3fIEVgt0U5KSsL27dshiiKio6MRGxtr8npxcTE2b96MrKwsuLi44LnnnkPbtm3N6kv2Q6qogHjtGiovXYaUlwe4ukDepQvkXbtC5uNj6/CIGsQa9Z+sZyVqHK5bT9Xs+WebVRJtURQRFxeHRYsWQaPRYP78+QgPD0dwcLBxn127dqF9+/aYO3cu0tLSEBcXh8WLF5vVl2xPzM+vunp99Sqgr4CgVsNl0F8g69ABggt/6JHjsVb9J+tZiRqH69YTYP8/22TWGCQlJQUBAQHw9/eHQqHAoEGDcOrUKZN9UlNT0bNnTwBAUFAQsrOzkZ+fb1Zfsg3JYIDh+nXo9+2D/pvdMFy5AnlwCFwfHAPXcQ9B3qULk2xyWPXVfzan6nrWkWG+6BuswsgwX4v8D8Ja50NkLdb63iH7Zu8/26xyRTsvLw8ajca4rdFokJycbLJPu3btcOLECXTt2hUpKSnIzs5GXl6eWX2rxcfHIz4+HgCwcuVKaLVaC5xN/RQKhU3GtSaxuBjlv/2G8osXIZaUws3LC27Do+DWtStkvLkRQMuYB86uoPx67e16mPXZNmQOaLXAh6FBDQmvwZp6PtQ4/FlgWdb43mkqzgHLsvefbVZJtCVJqtF291JusbGx2LFjB+bOnYu2bduiQ4cOkMlkZvWtFhMTg5iYGOO2LR4W4SwPqcg4c+k/T1/U+KHXIyPh798KlZcvQ7xxA5AAWVAg5PffD1lQECplMpSUlgKlpbYO3S44yzxoyeq6KObjat7PFnubA009n4aw53pJa7O3ecDPxvrsbQ44G2v+bKtLYGBgna9ZJdHWaDTIzc01bufm5sLX19dkH6VSieeffx5AVWL+wgsvoHXr1tDr9ffsS80r48wlJG3YgSzJDeUKD7S59gcyV6yGywM94NU+GPLu3aEIC4Pg5WXrUIksxtnqP1kLTvxsyBnZ+89qq9Roh4aGIiMjA7du3UJlZSWOHTuG8PBwk31KSkpQWVkJADh48CC6desGpVJpVl9qXme+2ocsyQ2elTp0vf0HfMuLUCC44mJWKVwffRQu4eFMssnpOVv9J2vBiZ8NOSN7/1ltlSvacrkc06ZNw4oVKyCKIqKiohASEoL9+/cDAEaOHIm0tDR8+OGHkMlkCA4OxrPPPltvX7Ic19xslCs80LEwHcUuSmR6qqGTu6JreQnXv6YWxRprAVsT1zZu2fjZkLOy55/VVltHu2/fvujbt69J28iRI43/7tKlCz744AOz+5Ll6DV+8Lt+EwKALKUvyhRu8NSXQR/oZ+vQqJFYl0nWwrWN7Rc/GyLrs0rpCDmWXhNHIaiyCDJJhE7hCk99GfyFcvSaOMrWoVEjVNdl7r98G7+mFWP/5duYvSsF6QXltg6NnNAzA9sgyNvVpM2e6iVbMn42RNbHR7BTDQE9u8ClXw/8npyGMKEU+kA/9Jo4Cm16dbV1aNQI9dVl2uuf2shxVddLbjmegZySCmg9+RcUe8HPhsj6mGhTDVJuLlRqHzww9yHIO3a0dTjURKzLJGuz53rJlo6fDZF1sXSEahBvpgKCAFmQfT8EgMzDukwiIiLbYKJNNRjSUiFr7QfBjX9OdAasyyQiIrINlo6QCam0FFJuHuR9+9g6FGomrMskIiKyDSbaZEJMTQUAyIKDbRwJNSfWZRIREVkfS0fIhCEtDYKnEgIfc09ERETUJEy0yUgyGCCmp0MWHAxBEGwdDhEREZFDY6JNRlJWFlBRCVkQy0aIiIiImoqJNhkZUlMBuRyyNgG2DoWIiIjI4THRJiMxNQ2yAH8ILlxfmYiIiKipmGgTAEAsKIBUWAhZcIitQyEiIiJyCky0CQAgpqUBAOTBfBokERERUXNgok0AqspGBB8fCF5etg6FiIiIyCkw0SZIFRUQszL5kBoiIiKiZsREmyBmZAAGkWUjRERERM2IiTZBvJkKuLpAaN3a1qEQEREROQ0m2i2cJEkQ01IhCwyEIJfbOhwiIiIip8FEu4WT8vIglZZBzvpsIiIiombFRLuFE1OrlvWTBbE+m4iIiKg5MdFu4cS0VMi0GggeHrYOhYiIiMipMNFuwSSdDmJ2Dpf1IyIiIrIAJtotmJiWBkgSy0aIiI |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Unrelated note: In general, I have found parallel coordinate plots more useful when they are interactive. (Something like https://facebookresearch.github.io/hiplot/)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
True, maybe worth suggesting to the optuna maintainers.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Optuna now have the interactive parallel coordinate plot.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nice, wish come true, thanks for letting us know.
Co-authored-by: Thomas J. Fan <[email protected]>
Co-authored-by: Thomas J. Fan <[email protected]>
notebooks/optuna-example.ipynb
Outdated
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtoAAAGHCAYAAACOFvWHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeVxU9f4/8NeZGbZhAJkZBFncUHHJXMLlKioIbplK30yvLd9Mr1lZWZk3t1wyS01LM/Wm8tVuy/1a/TIrywXzImpu9cU1FUxTVllkZxiYc35/EHMdWRyWWXk9Hw8eeT5zPufzPjMf6M3hfT5HkCRJAhERERERNSuZrQMgIiIiInJGTLSJiIiIiCyAiTYRERERkQUw0SYiIiIisgAm2kREREREFsBEm4iIiIjIAphoExHdJTIyEn/729/s5jj2Mk5D7NixAwqFwtZhNLupU6ciJibG1mEQkYNgok1EDiUrKwsvvvgi2rdvD1dXV/j5+WHixIlISkpq8LHeeusttG/fvkb7119/jffee6/JsTbXcapZOt57uX79OgRBwJEjR2q8tnTpUnTq1Mm4PXnyZKSlpZl97JiYGEydOrU5wmy0f//73xAEwfil0WgQFRWFxMTEJh23U6dOWLp0afMESUQOhYk2ETmMmzdvIjw8HMeOHcPmzZuRkpKCPXv2wMXFBQMHDsTevXubZRy1Wg1vb2+7OY69jNMQHh4e8Pf3t/q4kiShoqKiScf49ddfkZGRgYMHD8LDwwNjxozB9evXmydAImpRmGgTkcOYNWsWKioqcOjQIYwZMwZt27ZF//798a9//QvDhw/H1KlTUVZWBuA/V1g///xzdOzYEe7u7oiJicG1a9cAVJU2vPHGG/jjjz+MVzCrrzreXYoRGRmJ6dOnY9GiRWjdujVatWqFhQsXQhRFvPnmm/D394efnx8WLlxoEu+dx7n7amn1V/UVakmSMGPGDISGhsLDwwMdO3bEggULUF5e3uB4KyoqMG/ePAQFBcHV1RXdu3fH559/bhKbIAjYtGkTnnzySXh5eSEkJASrV69ung8KNUtHCgsL8fTTTyMgIABubm4ICQnBq6++CqCqHOPgwYP4+OOPjef273//GwBw+fJljB07FiqVCiqVCuPGjUNKSkqNcQ4dOoQ+ffrAzc0Nmzdvhkwmw7Fjx0xiSkhIgEwmw++//15v7H5+fggICEDv3r2xdetWlJSUYN++fbXuK0kS1qxZg44dO8LV1RWhoaFYt26d8fXIyEhcvXoVy5YtM54bk3ailoOJNhE5hNu3b2PPnj144YUXar16O3/+fGRlZeHAgQPGtoyMDGzatAk7d+5EYmIiioqKEBsbC0mSMHnyZLz++usIDg5GRkYGMjIy8Nprr9U5/ldffYWKigocOXIE7733Ht5++2089NBDKC4uRmJiItasWYO3334bP/74Y639Bw0aZBwnIyMDFy5cQGBgIKKiogBUJWz+/v74/PPP8dtvv2HdunXYvn073n77bQBoULwLFizA1q1bsW7dOpw/fx5PPPEEnnjiCRw8eNBkv2XLlmHo0KFISkrC3Llz8frrr+PQoUP1fxCNtGjRIvz666/YvXs3kpOTsXPnTnTr1g0AsH79egwZMgSTJk0yntugQYNQVlaGkSNHQqfTISEhAQkJCSguLsbo0aOh1+uNxxZFEX//+9+xdu1aXLp0CVOmTMGIESOwdetWkxi2bduG6OhodOzY0ey4PTw8AKDOq+SbNm3CG2+8gXnz5uHChQuYO3cu5s2bh7i4OABVZT3t27fHnDlzjOcWEhLSoPeOiByYRETkAE6cOCEBkL7++utaX8/NzZUASKtXr5YkSZKWLFkiAZCSk5ON+1y+fFkCIB04cECSJElavny51K5duxrHGjZsmDR9+nST7V69epns0717d+m+++4zabv//vulOXPm1Hmcanq9XoqMjJQiIiIknU5X5zm/9957UqdOnYzb5sRbUlIiubq6Shs3bjTZJzY2VoqKijJuA5BefPFFk33CwsKkefPm1RnPtWvXJACSh4eH5OnpafLl4uIihYaGGvfdvn27JJfLjdvjx4+XnnrqqTqPHR0dXeP1bdu2SR4eHlJ2draxLTMzU3J3d5c+/vhj4zgApMOHD5v0/X//7/9JSqVSys/PlyRJkm7fvi15eHhIX3zxRZ0xHDp0SAIg3bx5U5IkSSosLJT+9re/SQqFQjp37pwkSZL01FNPSdHR0cY+wcHB0ty5c02O8/LLL0sdOnQwboeGhkpLliypc1wicl68ok1EDkGSpHpfFwShRpufn5/JDXpdunSBVqvFxYsXGzx+r169TLYDAgJw//3312i7devWPY/13HPP4ebNm9i1axfc3NyM7Vu3bsWAAQPg7+8PlUqF+fPn448//mhQnCkpKdDr9Rg6dKhJ+7Bhw3DhwgWTtt69e5tsBwUFISsr655jbN++HUlJSSZfzz77bL19nn/+eXz11Ve47777MHv2bPz4448QRbHePhcuXED37t2h1WqNbf7+/ggLC6txLv369TPZHj9+PHx8fIwlM59++ilUKhUmTJhwz/MLCwuDSqWCj48P9u3bh3/+85+47777auxXWFiI1NTUWt/r69evo7S09J5jEZFzY6JNRA6hc+fOkMlkOH/+fK2vV7eHhYXVe5x7Jex1cXFxMdkWBKHWtnslj6tXr8bXX3+NPXv2mCSQX375JWbNmoXJkyfjhx9+wP/93/9h8eLFjb6x7+5fPCRJqtHm6ura4PiBqoS8U6dOJl9qtbrePqNGjcKNGzewcOFC6HQ6PPHEExg+fDgMBkODzqO2c5HL5XB3dzfZR6FQYPr06cbykW3btmHq1Kk1zrk2+/btw5kzZ5CTk4MbN25gypQpDYqxsXOMiJwPE20icghqtRpjxozBxo0bUVhYWOP1t99+G/7+/hgxYoSxLTs7G1evXjVuX7lyBbm5ucbaYFdX13smes3pm2++weLFi/H111/X+IXg8OHD6NOnD1599VU88MAD6Ny5c42b5syJt1OnTnBzc0NCQkKN4/fo0aNZzqOx1Go1pkyZgo8++gh79uxBQkKC8a8LtZ1bjx49cOHCBeTk5BjbsrKycOXKFbPOZcaMGThz5gz+8Y9/4MyZM2avNd6+fXuEhobe85cHb29vBAcH1/ped+jQAUqlss5zI6KWgYk2ETmMjRs3Qi6XY/jw4di7dy9u3ryJU6dO4bHHHsOhQ4ewY8cO481rAKBUKvH000/jl19+wenTp/HUU0+hZ8+exgeOdOjQAZmZmfj555+Rk5Nj0T/1X7hwAU888QSWLl2Krl27IjMzE5mZmcjOzgZQdSX+3Llz2L17N65evYr169fj66+/NjmGOfEqlUq89NJLeOONN/Dll18iOTkZb7/9Nnbv3o0FCxZY7PzuZeHChfj6669x+fJlJCcn47PPPoNKpULbtm0BVJ3bL7/8gqtXryInJwcVFRV47LHH4Ofnh8mTJ+PXX3/FL7/8gr/+9a8ICgrC5MmT7zlm27ZtMXr0aMyePRuRkZHo0qVLs5/X/PnzsWHDBmzduhXJycn46KOPsHnzZpP3ukOHDjh69Chu3LiBnJwcs/5qQETOgYk2ETmMdu3a4fTp0xgwYABmzpyJ0NBQjBkzBuXl5fj5558xevRok/3btGmDZ555Bo888ggGDx4MDw8P7Nq1y/in/tjYWDz66KMYO3Ys/Pz8mnV5u7udOnUKJSUlmD9/Ptq0aWP8qq4tnjlzJp588kk8/fTT6NOnD06cOFHjISfmxrtixQrMmDEDL7/8Mnr06IFPP/0Un376KaKjoy12fvfi7u6OxYsX44EHHkB4eDjOnj2LH3/8ET4+PgCAOXPmQKvVolevXvDz88PRo0fh4eGB/fv3w83NDUOHDsWwYcPg6emJvXv3mlUCAgDPPPMM9Ho9nnnmGYuc13PPPYc333wTb7/9Nrp3745Vq1Zh5cqVmD59unGfZcuWoaCgAGFhYfDz88ONGzcsEgsR2R9BYjEZETmhpUuX4tNPPzVZc5lank2bNmHx4sVIS0szufGUiMgaFPfehYiIyLEUFxcjJSUFa9aswQsvvMAkm4hsgqUjRETkdF544QX0798f3bp1w+uvv27rcIiohWLpCBERERGRBfCKNhERERGRBTDRJiIiIiKyACbaREREREQW4NSrjqSnp1t9TK1Wa/IUM2qZOA+Ic4AAzgPiHGgJAgMD63yNV7SJiIiIiCyAiTYRERERkQUw0SYiIiIisgCnrtG+myRJ0Ol0EEURgiBYZIysrCyUl5db5NgtnSRJkMlkcHd3t9jnR0RERNRcrJZoJyUlYfv27RBFEdHR0YiNjTV5vbi4GJs3b0ZWVhZcXFzw3HPPoW3btgCAWbNmwd3dHTKZDHK5HCtXrmxUDDqdDi4uLlAoLHfaCoUCcrncYsdv6SorK6HT6eDh4WHrUIiIiIjqZZVEWxRFxMXFYdGiRdBoNJg/fz7Cw8MRHBxs3GfXrl1o37495s6di7S0NMTFxWHx4sXG15csWQJvb+8mx2HJJJssT6FQ8C8GRERE5BCsUqOdkpKCgIAA+Pv7Q6FQYNCgQTh16pTJPqmpqejZsycAICgoCNnZ2cjPz2/WOFhu4Bz4ORIREZEjsEqinZeXB41GY9zWaDTIy8sz2addu3Y4ceIEgKrEPDs722SfFStW4PXXX0d8fLw1QraYkJAQjBgxAjExMRg1alSNXzjMtXXrVpSVldVoX7t2Ld555x2TtvPnz2PYsGH1Hm/ixIk4c+ZMo2IhIiIiopqsUkchSVKNtruvSsbGxmLHjh2YO3cu2rZtiw4dOkAmq/o9YPny5VCr1SgoKMBbb72FwMBAdO/evcYx4+PjjYn4ypUrodVqTV7PyspqUOlIRcpVVBw+DDErCzJ/f7gMHQqXTqH37FffGO7u7jh06BAA4NChQ1i1ahW++eYbs2OqFhcXh0mTJsHLy8uk/ZFHHsGUKVPwxhtvGNu+++47PPLII/XGJQgC5HK5Q5TWuLm51fhs7Y1CobD7GMmyOAcI4DwgzoGWzipZlUajQW5urnE7NzcXvr6+JvsolUo8//zzAKoS8xdeeAGtW7cGAKjVagCAj48P+vXrh5SUlFoT7ZiYGMTExBi3734SU3l5udk3KlZevQr9F19CUKkAjQaGggJU/utfMEx6FIrQupNthUKBysrK+o/95+v5+fnw9vY2bm/evBnfffcd9Ho9Ro8ejddeew2lpaWYOXMmMjIyIIoiZs+ejZycHGRmZuK//uu/4Ovri6+++sp47Pbt28Pb2xsnT55E3759AQDffvstPvvsM1RWVmLevHk4c+YMdDodxo4di9deew1A1XtuMBhQWVmJzp07Izk5GQDw/fffIz4+HuvWrUNubi7mzZuHtLQ0AMCyZcvQr18/s97P5lReXm73T9nik8CIc4AAzgPiHGgJ6nsypFUS7dDQUGRkZODWrVtQq9U4duwYXnrpJZN9SkpK4ObmBoVCgYMHD6Jbt25QKpXQ6XSQJAkeHh7Q6XQ4e/YsJk6c2OSYKk6ehHRX+YrJ60eOQtLpIJSUGNsknQ7l23dAjBhcax9BrYZi0KB6x9XpdBgxYgTKy8tx69YtfPHFFwCAhIQEXLt2DXv27IEkSZg6dSqOHz+O3NxcBAQE4JNPPgEAFBYWwtvbG1u2bMGXX35p/CXkTrGxsdi9ezf69u2LX375Bb6+vujYsSMA4PXXX4evry8MBgMmT56Mixcv1vpLS20WL16MGTNmoH///khLS8Njjz2GhIQEs/oSERERtTRWSbTlcjmmTZuGFStWQBRFREVFISQkBPv37wcAjBw5Emlpafjwww8hk8kQHByMZ599FgBQUFCANWvWAAAMBgMiIiLQu3dvi8csFRYCd5VlwM2tqr0J3N3dceDAAQDA6dOnMXv2bPz0009ISEhAQkICRo4cCQAoLS3FtWvX0L9/fyxfvhwrVqxATEwMBgwYcM8xxo8fjwkTJmDJkiXYvXs3JkyYYHztu+++w2effQaDwYCsrCwkJyebnWgnJibiypUrxu3i4mIUFxdDpVI15C0gIiIiahGsVpDbt29fYylDteqkEgC6dOmCDz74oEY/f39/vPvuu80ej0v//vW+LmZmQSoqgnBHsi0VFUHo3Bmuo0c3Swzh4eHIy8tDbm6usVzmySefrLHfjz/+iJ9++gnvvPMOhg0bhldeeaXe4wYFBSEkJAQ///wzfvjhB3z77bcAgBs3buCjjz7Cnj170KpVK7z88svQ6XQ1+t9ZP3/nUnqiKOLbb7/lGtZEREREZuAj2OugGBIBqbgYUlERJFGs+m9xMRRDIpptjJSUFBgMBvj6+iIyMhI7d+5EyZ+lKhkZGcZabA8PDzzyyCN49tlnce7cOQCASqVCcXFxnceeMGECli5divbt2xtrh4qKiuDh4QFvb29kZ2cbb8q8m5+fH5KTkyGKIvbu3WtsHzZsGHbs2GHcPn/+fFPfAiIiIiKnZf9LTNiIIjQUmPQoKhOP/GfVkQfH1HsjpDmqa7SBqhsQ161bB7lcjmHDhiE5ORnjx48HUHVz6IYNG3D9+nW89dZbEAQBLi4uxqX7Hn/8cTzxxBNo3bq1yc2Q1caNG4clS5Zg+fLlxrYePXrgvvvuQ1RUFNq2bVvnjYzz58/HU089hcDAQISFhRmT/+XLl2PBggWIiYlBZWUlBgwYgFWrVjXp/SAiIiJyVoJU29p7TiI9Pd1ku7S0FEql0qJjmrPqCDWNNT7HpuJd5sQ5QADnAXEOtAT1rTrC0hEiIiIiIgtg6QgREdUp48wlnPlqH1xzs6HX+KHXxFFo06trvX0qr141KbtTDIloctmdLTnT+VjrXJxtHGtpzPk423vQGPb8HsiXLl261NZBWEpRUZHJdkVFBVxcXCw6pkwmgyiKFh2jpbPG59hUSqUSpaWltg6DbMgZ5kDGmUtI2rADWUUVyJApUV5QhOKTv0DVLhheAbU/6a76YV8AILRqBRQXw/B/SRAC20BWy7r/9q6p52NP88Ban42zjdNU5s6BxpyPo7wHlmQP78HdT+m+E2u0mxlrtC2PNdrkCJxhDux9Yz1y0rKhLi+CW6UeAOBqqICXtxLdxgyttU/FqVOQysshuLkZ26q3XWzwJNmmaur5eKo8UVJccs/9rMFan42zjdNU5s6BxpyPo7wHlnTneyAL8IdMrTEuz+w+9SmrxGDzJ0MSEZHjcc/OhH9JAVylShS4qiAJACR3KCvLIQtsU3sngwGCRm2yHj9UnkBBYd197FkTz8fF2xuyJj7orNlY67NxtnGayOw50JjzcZD3wKLueA8EF9eqNk9PiFlZto3rT0y0iYioBrGwEK0qSlBWqcNl3xCUuFQ9qMpTXwa3QDVcBg+utZ8hOaX2h321bVdnH3vW1PPx1GpRZid/2bDWZ+Ns4zSVuXOgMefjKO+BJdX2HqCkBDJ/f9sFdQeuOmJl6enpePrppzF48GAMGjQIixcvhl5f9SfZnTt3YuHChbX2q15fu6H27t1r8tj0d999F4cPH27Usart3LkTzz//vElbXl4eevbsafIkybu9/PLL+P7775s0NhFZnpiXh4of9yK4RyeUePkCEiBIEjz1ZfAXytFr4qg6+1rjYV/W5EznY61zcbZxrKUx5+Ns70Fj2Pt7wETbiiRJwowZMzB69GgcPXoUiYmJKCkpMeuhL9WPUW+ouxPtuXPnYujQ2msrzfXggw/i8OHDKCsrM7Z9//33GDlyJNzuqBMjIscjZmejYt8+QCZAPe2/0eOVGQgIVKOrrAQBgWr0fnFqvauOKEJD4TrpUQheXpCysyF4ecF10qN2swJAQznT+VjrXJxtHGtpzPk423vQGPb+HrB0pB7pBeXYcjwDOcUV0Kpc8MzANgj0aXwieeTIEbi5uWHy5MkAALlcjqVLl2LgwIF47bXXqsZMT8fjjz+OGzdu4OGHH8arr74KAOjcuTOSk5MBAJs3b8Z3330HvV6P0aNHG/t++eWX+OijjwAA3bp1w3//93/jwIEDOH78ONavX4+tW7di3bp1iImJgVKpxM6dO437Hzt2DB999BE+/vhjJCQkYM2aNdDr9WjXrh3ef/99eHp6Gs/Dy8sLAwcOxP79+zFhwgQAVb8IvPTSSwCA999/HwcOHIBOp0N4eDhWrVplWj8GYMCAAfjxxx+hVqtx5swZLF++HF999RVKS0uxaNEiXLp0CZWVlZgzZw5Gjar76hkRNR9DWjoqDh2CoPSA68iREFQqtGnV6p7L+d1NERpqN/+Taw7OdD7WOhdnG8daGnM+zvYeNIY9vwdMtOuQXlCO2btSkFaoN7ZdyCjB+oc7NTrZvnLlCnr27GnS5uXlhaCgIFy7dg0AkJSUhIMHD8LDwwNjx45FdHQ0evXqZdw/ISEB165dw549eyBJEqZOnYrjx4/D19cXH3zwAXbv3g21Wo3bt2/D19cXI0aMQExMDB566CGTcYcOHYrXX3/duILHt99+i/HjxyMvLw/r16/Hzp07oVQqsXHjRmzZsgWvvPKKSf8JEybgm2++wYQJE5CZmYnff/8dg/+sB5s6dapx/xdffBEHDhzAyJEjzXqP1q9fj8GDB+O9995DQUEBxo4diyFDhtj9KiNEjs7wxx+oOHwYgrcPXEeOgODhYeuQiFqcxlzga+6LgtS8mGjXYcvxDJMkGwDSCvXYcjwDS0e1b9QxJUmqcWX37vYhQ4ZA/ee6j2PGjMHJkydrJNoJCQnGxLW0tBTXrl3DxYsXMXbsWGNfX1/femNRKBSIiorCgQMHMHbsWBw8eBCLFi3Czz//jCtXrhivVFdUVOCBBx6o0T8mJgYLFixAUVERvvvuO4wdOxZyuRxA1dXxzZs3o6ysDPn5+QgLCzM70T58+DAOHDiAf/zjHwCA8vJypKWloXPnzmb1J6KGMyQno+LYz5D5aeESEwPB1dXWIRG1OI25wGeJi4LUvJho1yGnuKL29pLa283RpUsX/PDDDyZtRUVFSE9PR/v27XH27Nkaifjd25Ik4YUXXsCTTz5p0h4XF1drEl+fcePG4eOPP0arVq3Qu3dvqFQqSJKEoUOHYtOmTfX29fDwQGRkJH788Ufs3r0b1c890ul0WLBgAX744QcEBQVh7dq1td4gqVAojA/2ufN1SZKwZcsWdOrUqUHnQkSNU3nhAipPnYYsKBAukZEQ7PxhUETOqjEX+CxxUZCaF2+GrINWVfv/bLSejf+f0JAhQ1BWVoYvv6x6gpHBYMCbb76JSZMmwePPP9MmJibi9u3bKCsrw759+9DvrgXnIyMjsXPnTpSUVC1+n5GRgZycHEREROC7775DXl4eAOD27dsAAJVKZdz3boMGDcK5c+fw2WefYdy4cQCABx54AKdOnTKWspSVleHq1au19o+NjcWWLVuQk5NjvOpdnTSr1WqUlJRgz549tfYNDg7G2bNnAcBkn2HDhmH79u2ofo7S+fPna38ziahJJElC5a//h8pTpyFv3x4uw4czySayocZc4LPERUFqXryiXYdnBrbBhYwSk98Ug7xd8czAxi8ALwgCtm3bhgULFmDdunWQJAnDhw/HvHnzjPv069cPL730Eq5fv46HH37YWDZSfbV62LBhSE5ONi73p1QqsWHDBoSFheGll17CxIkTIZPJcN9992HdunWYMGEC5s6di7i4OGzZssUkHrlcjpiYGHzxxRdYv349AECj0eD999/HrFmzjMsO/v3vf0doLTcZDBs2DC+//DKmTJlijM/HxwePPfYYYmJiEBwcbFL2cqdXX30Vc+bMwYYNG9CnTx9j+8svv4wlS5YgJiYGkiQhODgY//znPxv1ft8p48wlnPlqH1xzs6HX+KHXxFENvsHLkVVevYrKxCMQs7Ig8/eHYkiE3d44Yk8a875V97lVUAC9j0+D+lj687lzHKmiAlAq4TpgABR/GQhBxusudWENLFlDYy7wWeKiIDUvPoK9vv7VP1xLKqD1NO+HqyUewZ6Xl4fRo0fj5MmTzXpcR9XQzzHjzCUkbdiBLMkNpS7uUFbo4C+U33OZsqawp8dvV169Cv0XX0JQqQBPT6CkBFJxsV0tf2SPGvO+3dlH6eeH0uzsBvWx5OdTPQ48PSHm5UG6dQuCUgm3Z5+FSyfOg7rUVgMb5O1qdg2sPf0sINswdw40Zq41dX5S86jvEexMtJtZcyfamZmZmDhxIqZNm4Zp06Y123EdWUM+R0mScHDeauhSM6CQDJBJVXXhbgY9vL1V6D5+uEViVKk8UVxce8mOtVX8/DMknQ6Cu7uxrXrb5S9/sWFk9q0x79udfVxdXaHX6xvUx9xxmnQ+ri5AuR6ywDYQPJQQvLzgPvWpZhvH2Szddx37L9+u0T4yzNesGlgm2tSQOdCYC3yN6UPNq75Em6Ujdi4gIABHjhyxdRgORRJFSLeyYbh5A+KNGwi6dhE5ogtKXdxRIav6c1qFoIC3rgzCHeuDNyeZyguCvfwKW1YGwdvb9GZZFxegsNBi5+8UGvO+3dFHcHWF0MA+Zo/TGHfGFhAAma8akihCzMpqvjGcEGtgyZoCfdwafBNjY/qQ9TDRJodTmleAw+9sNam3DujRCWJ6OsQbNyCmpkLSlQNyGWRt2iAnqCNuFOiR7+ZlPIanvgzyQDX6RFvmiraXVotyO7mKJd68CamoCILXf85fKiqC0LEjXC10/s6gMe+bePMminLz8Us+UF4MuCk88UArwOsefazx+dQ2DkpKIPP3b7YxnBFrYImoKVrU3S9OXCXTYuhLy3D7Ugoy0/OQUukO3bUbuPnOWuS+vwEVPx2C4cZNyAKD4DJsGNwmT4ZrTAw6TZ0MtcwAT30ZBEmCp74M/kI5ek1sGU+cVAyJgFRcDKmoqOpqf1ERpOJiKIZE2Do0u9aY9+12nwE4/VsGMtPzkHa7FJnpeTj9WwZu9xnQrONY63yo6sb4IG/TdcWbemM8EbUc8qXVCyA7oaKiIpNtg8EAQRAgs+Dd9TKZzLg+NDW//IxsZJy5BNnlywgsyYHSUA6DKKGgEmj79BQoBgyAvEN7yHxbQfjzATpeAVqo2gWj5MLybLEAACAASURBVGY6/HX58PDXovfTEy266ohSqURpaanFjt8QMrUaQmAbSJlZkG7dgkythsuDY3gj5D005n1be6YYh0o8EFCah9a6fOS7e+H7kH647hOIyE6tmm0ca50PAV7uCkR08EG+rhI+Hgr0bOOJRSPamV0Da08/C8g2OAecn9edfym8S4sqHXF3d4dOp0N5eXmDH+5iLjc3t1of0EJNI1VUQCosROH+Q9DtS4Sr3AW3lL4odPWETu6KrlIJZPXcjNCmV9cWtZzf3RShoUyoGqGh71tOcQWu+wTiuo/pXFTfo57XWp8P50HjsAaWiBqrRSXagiAYHwxjKbzDvPlIkgQxPQOGy5cg3kwFAOScPocsD19keaqN+3nqy6AP9LNVmERGrOclqsK1x4mqtKhEmxyDVF4OQ0oKDJcvQyosguDuDkXP+yDv0gXBvfsjZ8MOeOrLTNbEbin11mTfLPGgKyJHU9vazhcySri2M7VITLTJbog5OTBcvgzD79cAgwEy/9ZQ9O4NWbt2xnrrNr26Ai9O/c9THgNb3lMeyX4F+rhh/cOdsOV4Bgr0gI8reCWPWpwtxzNMkmwASCvUY8vxDJbgUIvDRJtsSqqshHj9OgyXLkPMyQFcFJB3CoU8LAwytbrWPi293prsW3U9L8vIqKXi2uNE/8FEm2xCLCyE4fIViCnJkMr1EFr5VK0YEtoRgqvrvQ9A5ERYz0rOxJr3KvB7h+wdE22yGkkUIaamVd3cmJYOyATI27aDvGsYBH9/i60EQ2TPWM9KzsZa9yrwe4ccARNtsjiprAyG5GQYLl+BVFICQekBRZ/ekHfuDEGptHV4RDbFelZyNnfeq5BTUgGtp2WuNPN7hxwBE22yCEmSIN26VXVz4x9/AAYRssA2UPTvB1lwsPHmRqKWjvWs5IyssfY4v3fIEVgt0U5KSsL27dshiiKio6MRGxtr8npxcTE2b96MrKwsuLi44LnnnkPbtm3N6kv2Q6qogHjtGiovXYaUlwe4ukDepQvkXbtC5uNj6/CIGsQa9Z+sZyVqHK5bT9Xs+WebVRJtURQRFxeHRYsWQaPRYP78+QgPD0dwcLBxn127dqF9+/aYO3cu0tLSEBcXh8WLF5vVl2xPzM+vunp99Sqgr4CgVsNl0F8g69ABggt/6JHjsVb9J+tZiRqH69YTYP8/22TWGCQlJQUBAQHw9/eHQqHAoEGDcOrUKZN9UlNT0bNnTwBAUFAQsrOzkZ+fb1Zfsg3JYIDh+nXo9+2D/pvdMFy5AnlwCFwfHAPXcQ9B3qULk2xyWPXVfzan6nrWkWG+6BuswsgwX4v8D8Ja50NkLdb63iH7Zu8/26xyRTsvLw8ajca4rdFokJycbLJPu3btcOLECXTt2hUpKSnIzs5GXl6eWX2rxcfHIz4+HgCwcuVKaLVaC5xN/RQKhU3GtSaxuBjlv/2G8osXIZaUws3LC27Do+DWtStkvLkRQMuYB86uoPx67e16mPXZNmQOaLXAh6FBDQmvwZp6PtQ4/FlgWdb43mkqzgHLsvefbVZJtCVJqtF291JusbGx2LFjB+bOnYu2bduiQ4cOkMlkZvWtFhMTg5iYGOO2LR4W4SwPqcg4c+k/T1/U+KHXIyPh798KlZcvQ7xxA5AAWVAg5PffD1lQECplMpSUlgKlpbYO3S44yzxoyeq6KObjat7PFnubA009n4aw53pJa7O3ecDPxvrsbQ44G2v+bKtLYGBgna9ZJdHWaDTIzc01bufm5sLX19dkH6VSieeffx5AVWL+wgsvoHXr1tDr9ffsS80r48wlJG3YgSzJDeUKD7S59gcyV6yGywM94NU+GPLu3aEIC4Pg5WXrUIksxtnqP1kLTvxsyBnZ+89qq9Roh4aGIiMjA7du3UJlZSWOHTuG8PBwk31KSkpQWVkJADh48CC6desGpVJpVl9qXme+2ocsyQ2elTp0vf0HfMuLUCC44mJWKVwffRQu4eFMssnpOVv9J2vBiZ8NOSN7/1ltlSvacrkc06ZNw4oVKyCKIqKiohASEoL9+/cDAEaOHIm0tDR8+OGHkMlkCA4OxrPPPltvX7Ic19xslCs80LEwHcUuSmR6qqGTu6JreQnXv6YWxRprAVsT1zZu2fjZkLOy55/VVltHu2/fvujbt69J28iRI43/7tKlCz744AOz+5Ll6DV+8Lt+EwKALKUvyhRu8NSXQR/oZ+vQqJFYl0nWwrWN7Rc/GyLrs0rpCDmWXhNHIaiyCDJJhE7hCk99GfyFcvSaOMrWoVEjVNdl7r98G7+mFWP/5duYvSsF6QXltg6NnNAzA9sgyNvVpM2e6iVbMn42RNbHR7BTDQE9u8ClXw/8npyGMKEU+kA/9Jo4Cm16dbV1aNQI9dVl2uuf2shxVddLbjmegZySCmg9+RcUe8HPhsj6mGhTDVJuLlRqHzww9yHIO3a0dTjURKzLJGuz53rJlo6fDZF1sXSEahBvpgKCAFmQfT8EgMzDukwiIiLbYKJNNRjSUiFr7QfBjX9OdAasyyQiIrINlo6QCam0FFJuHuR9+9g6FGomrMskIiKyDSbaZEJMTQUAyIKDbRwJNSfWZRIREVkfS0fIhCEtDYKnEgIfc09ERETUJEy0yUgyGCCmp0MWHAxBEGwdDhEREZFDY6JNRlJWFlBRCVkQy0aIiIiImoqJNhkZUlMBuRyyNgG2DoWIiIjI4THRJiMxNQ2yAH8ILlxfmYiIiKipmGgTAEAsKIBUWAhZcIitQyEiIiJyCky0CQAgpqUBAOTBfBokERERUXNgok0AqspGBB8fCF5etg6FiIiIyCkw0SZIFRUQszL5kBoiIiKiZsREmyBmZAAGkWUjRERERM2IiTZBvJkKuLpAaN3a1qEQEREROQ0m2i2cJEkQ01IhCwyEIJfbOhwiIiIip8FEu4WT8vIglZZBzvpsIiIiombFRLuFE1OrlvWTBbE+m4iIiKg5MdFu4cS0VMi0GggeHrYOhYiIiMipMNFuwSSdDmJ2Dpf1IyIiIrIAJtotmJiWBkgSy0aIiIiILICJdgsmpqZC8PCAoNXaOhQiIiIip8NEu4WSR |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I am getting an error running with optuna=2.10.0
and matplotlib=3.4.3
optuna.visualization.matplotlib.plot_parallel_coordinate(
study, params=['num_units', 'lr', 'max_epochs', 'optimizer'])
ValueError: Data has no positive values, and therefore can not be log-scaled.
Are you getting this error too?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I did not get this error when I ran the notebook. Then I upgraded optuna from 2.3.0 to 2.10.0 and now I get the same error. Seems like it's a regression in optuna?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Feels like a regression. The function works when "lr" is removed.
Co-authored-by: Thomas J. Fan <[email protected]>
Closing this as it's super old :) |
Fixes #718
This notebook shows how to use skorch in conjunction with optuna, which can be much more efficient than
GridSearchCV
orRandomizedSearchCV
. I don't have a deep knowledge of optuna, so there may be room for improvement. The whole example is inspired by this one.Right now, the implementation makes use of the skorch-internal train/valid split. This allows us to use optuna with very few lines of extra code.
Right now, this notebook contains an ad hoc implementation of an
OptunaCallback
, which is responsible for logging and pruning trials. Possibly, this could be extended for more functionality. If so, it could find it's way into the skorch code base.Eventually, we could consider adding a section to the docs about hyper-parameter optimization using different libraries. WDYT?