We support the following APIs for MLLM inference: OpenAI, Anthropic, Azure OpenAI, and vLLM for Local Models. To use these APIs, you need to set the corresponding environment variables:
- OpenAI
export OPENAI_API_KEY=<YOUR_API_KEY>
- Anthropic
export ANTHROPIC_API_KEY=<YOUR_API_KEY>
- OpenAI on Azure
export AZURE_OPENAI_API_BASE=<DEPLOYMENT_NAME>
export AZURE_OPENAI_API_KEY=<YOUR_API_KEY>
- vLLM for Local Models
export vLLM_ENDPOINT_URL=<YOUR_DEPLOYMENT_URL>
Alternatively you can directly pass the API keys into the engine_params argument while instantating the agent.
from agent_s.GraphSearchAgent import GraphSearchAgent
engine_params = {
"engine_type": 'anthropic', # Allowed Values: 'openai', 'anthropic', 'azure_openai', 'vllm'
"model": 'claude-3-5-sonnet-20240620', # Allowed Values: Any Vision and Language Model from the supported APIs
}
agent = GraphSearchAgent(
engine_params,
experiment_type='openaci',
platform=platform_os,
max_tokens=1500,
top_p=0.9,
temperature=0.5,
action_space="pyautogui",
observation_type="atree",
max_trajectory_length=3,
a11y_tree_max_tokens=10000,
enable_reflection=True,
)
To use the underlying Multimodal Agent (LMMAgent) which wraps LLMs with message handling functionality, you can use the following code snippet:
engine_params = {
"engine_type": 'anthropic', # Allowed Values: 'openai', 'anthropic', 'azure_openai', 'vllm'
"model": 'claude-3-5-sonnet-20240620', # Allowed Values: Any Vision and Language Model from the supported APIs
}
from agent_s.MultimodalAgent import LMMAgent
agent = LMMAgent(
engine_params = engine_params,
)
The GraphSearchAgent also utilizes this LMMAgent internally.