Skip to content

Latest commit

 

History

History
64 lines (51 loc) · 1.79 KB

models.md

File metadata and controls

64 lines (51 loc) · 1.79 KB

We support the following APIs for MLLM inference: OpenAI, Anthropic, Azure OpenAI, and vLLM for Local Models. To use these APIs, you need to set the corresponding environment variables:

  1. OpenAI
export OPENAI_API_KEY=<YOUR_API_KEY>
  1. Anthropic
export ANTHROPIC_API_KEY=<YOUR_API_KEY>
  1. OpenAI on Azure
export AZURE_OPENAI_API_BASE=<DEPLOYMENT_NAME>
export AZURE_OPENAI_API_KEY=<YOUR_API_KEY>
  1. vLLM for Local Models
export vLLM_ENDPOINT_URL=<YOUR_DEPLOYMENT_URL>

Alternatively you can directly pass the API keys into the engine_params argument while instantating the agent.

from agent_s.GraphSearchAgent import GraphSearchAgent
engine_params = {
            "engine_type": 'anthropic', # Allowed Values: 'openai', 'anthropic', 'azure_openai', 'vllm'
            "model": 'claude-3-5-sonnet-20240620', # Allowed Values: Any Vision and Language Model from the supported APIs
        }
agent = GraphSearchAgent(
    engine_params,
    experiment_type='openaci',
    platform=platform_os,
    max_tokens=1500,
    top_p=0.9,
    temperature=0.5,
    action_space="pyautogui",
    observation_type="atree",
    max_trajectory_length=3,
    a11y_tree_max_tokens=10000,
    enable_reflection=True,
)

To use the underlying Multimodal Agent (LMMAgent) which wraps LLMs with message handling functionality, you can use the following code snippet:

engine_params = {
    "engine_type": 'anthropic', # Allowed Values: 'openai', 'anthropic', 'azure_openai', 'vllm'
    "model": 'claude-3-5-sonnet-20240620', # Allowed Values: Any Vision and Language Model from the supported APIs
    }
from agent_s.MultimodalAgent import LMMAgent
agent = LMMAgent(
    engine_params = engine_params,
)

The GraphSearchAgent also utilizes this LMMAgent internally.