-
Notifications
You must be signed in to change notification settings - Fork 38
/
champion_matrix.py
267 lines (242 loc) · 10.2 KB
/
champion_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# -*- coding: utf-8 -*-
"""
LoLa champion relationship matrix
"""
import time
import pandas as pd
import numpy as np
import sqlite3
import itertools
# TODO: DECORATOR
def time_report():
# start_time = time.time()
# extract_Kill_infor()
# end_time = time.time()
# print 'Generate Kill Matrix costs: %.2fs' %(end_time-start_time)
pass
def initial_matrix():
'''
initial champion-champion matrix, no direction
'''
conn = sqlite3.connect('lola.db')
# TODO: champion static data
cursor = conn.execute("SELECT champion FROM ChampionMatchStats")
champions = cursor.fetchall()
conn.close()
champion_list = []
for i in range(len(champions)):
champion_list.append(champions[i][0])
initial_matrix_df = pd.DataFrame(columns=champion_list, index=champion_list).fillna(0)
return initial_matrix_df
def kill_matrix():
'''
row: killer, column: victim
'''
kill_matrix_df = initial_matrix()
temp_happen = []
conn = sqlite3.connect('lola.db')
cursor = conn.execute("SELECT match_id,happen,killer,victim from FrameKillEvent")
i = 0
# use the order of column (by match and happen) in the FrameKillEvent table
# TODO: avoid using database record order, instead use match_id and happen to de-duplicate
for row in cursor:
temp_happen.append(row[1])
if i==0:
temp_killer = row[2]
temp_victim = row[3]
kill_matrix_df.ix[temp_killer, temp_victim] += 1
i += 1
else:
if not row[1]==temp_happen[i-1]:
temp_killer = row[2]
temp_victim = row[3]
kill_matrix_df.ix[temp_killer, temp_victim] += 1 # row kills column
i += 1
conn.close()
kill_matrix_df.to_csv('kill_matrix.csv')
return kill_matrix_df
def assist_matrix():
'''
row: assist, column: killer
'''
assist_matrix_df = initial_matrix()
conn = sqlite3.connect('lola.db')
cursor = conn.execute("SELECT killer,assist from FrameKillEvent") # consider the relationship between a&v or a&k?
for row in cursor:
if not row[1]==None:
temp_killer = row[0]
temp_assist = row[1]
assist_matrix_df.ix[temp_assist, temp_killer] += 1 # row helps column
conn.close()
assist_matrix_df.to_csv('assist_matrix.csv')
return assist_matrix_df
def incidence_matrices():
conn = sqlite3.connect('lola.db')
match_ids = pd.read_sql("SELECT match_id FROM MatchChampion", conn)['match_id']
counter_matrix = initial_matrix()
partner_matrix = initial_matrix()
count = 0
print('processed match count:')
for m in match_ids: # ten champions each match, combinations
count += 1
if count % 100 == 0:
print(count)
match_champions = conn.execute("SELECT * FROM MatchChampion WHERE match_id = ?", (str(m),)).fetchall()
champions = list(match_champions[0])
champions.remove(match_champions[0][0]) # remove match_id in the list
champions = [c.decode('utf8') for c in champions] # from byte like b'xx'
champions_team_1 = champions[:5]
champions_team_2 = champions[5:]
for t in (champions_team_1, champions_team_2):
for cp in itertools.combinations(t, 2):
partner_matrix[cp[0]][cp[1]] += 1
partner_matrix[cp[1]][cp[0]] += 1
for cc in itertools.product(champions_team_1, champions_team_2):
counter_matrix[cc[0]][cc[1]] += 1
counter_matrix[cc[1]][cc[0]] += 1
conn.close()
return counter_matrix, partner_matrix
def kill_matrix_to_sqlite():
kill_matrix_df = kill_matrix()
conn = sqlite3.connect('lola.db')
temp_champions = list(kill_matrix_df.columns)
for i in temp_champions:
for j in temp_champions:
conn.execute("INSERT OR REPLACE INTO ChampionKillMatrix(killer,victim,kills) VALUES(?,?,?)",(i,j,int(kill_matrix_df[j][i])))
print('$-----Table:ChampionKillMatrix Mission:kill infor-%s [Finished].-----$'%i)
conn.commit()
conn.close()
def assist_matrix_to_sqlite(assist_matrix_df):
assist_matrix_df = assist_matrix()
conn = sqlite3.connect('lola.db')
temp_champions = list(assist_matrix_df.columns)
for i in temp_champions:
for j in temp_champions:
conn.execute("INSERT OR REPLACE INTO ChampionAssistMatrix(killer,assist,assists) VALUES(?,?,?)",(i,j,int(assist_matrix_df[i][j])))
print('$-----Table:ChampionAssistMatrix Mission:assist infor-%s [Finished].-----$'%i)
conn.commit()
conn.close()
def incidence_matrices_to_sqlite():
incidence_matrices_df = incidence_matrices()
counter_matrix_df = incidence_matrices_df[0]
partner_matrix_df = incidence_matrices_df[1]
conn = sqlite3.connect('lola.db')
temp_champions = list(counter_matrix_df.columns)
for i in temp_champions:
for j in temp_champions:
conn.execute("INSERT OR REPLACE INTO ChampionIncidenceMatrix(champion_1,champion_2,counters, partners) VALUES(?,?,?,?)",(i, j, int(counter_matrix_df[j][i]), int(partner_matrix_df[j][i])))
print('$-----Table:ChampionIncidenceMatrix Mission:inci infor-%s [Finished].-----$'%i)
conn.commit()
conn.close()
def sqlite_to_kill_matrix():
'''
read champion kill matrix from database, Kill(i,j) means i kills j
norm: None / 'picks'
'''
kill_matrix_df = initial_matrix()
conn = sqlite3.connect('lola.db')
cursor = conn.execute("SELECT killer,victim,kills FROM ChampionKillMatrix")
for row in cursor:
kill_matrix_df.ix[row[0]][row[1]] = row[2]
conn.close()
return kill_matrix_df
def sqlite_to_death_matrix(norm=None):
'''
read champion death matrix from database, Death(i,j) means i is victim of j
norm: None / 'picks'
'''
death_matrix_df = sqlite_to_kill_matrix(norm).transpose() # D is K.transpose()
return death_matrix_df
def sqlite_to_assist_matrix(norm=None):
'''
read champion assist matrix from database, Assist(i,j) means i assists j
norm: None / 'picks'
'''
assist_matrix_df = initial_matrix()
conn = sqlite3.connect('lola.db')
cursor = conn.execute("SELECT killer,assist,assists FROM ChampionAssistMatrix")
for row in cursor:
assist_matrix_df.ix[row[1]][row[0]] = row[2]
conn.close()
return assist_matrix_df
def sqlite_to_incidence_matrix(relation):
'''
read champion incidence matrix from database, Incidence(i,j) means i and j are both picked (undirected)
'''
incidence_matrix_df = initial_matrix()
conn = sqlite3.connect('lola.db')
if relation == 'counter':
cursor = conn.execute("SELECT champion_1,champion_2,counters FROM ChampionIncidenceMatrix")
for row in cursor:
incidence_matrix_df.ix[row[0]][row[1]] = row[2]
incidence_matrix_df[row[0]][row[1]] = row[2]
elif relation == 'partner':
cursor = conn.execute("SELECT champion_1,champion_2,partners FROM ChampionIncidenceMatrix")
for row in cursor:
incidence_matrix_df.ix[row[0]][row[1]] = row[2]
incidence_matrix_df[row[0]][row[1]] = row[2]
conn.close()
return incidence_matrix_df
def dataframe_to_champion_matrix(matrix_df, norm):
'''
generate normalized champion matrix, numpy.ndarray
'''
if norm == None:
champion_matrix = matrix_df.as_matrix().astype(float)
elif norm == 'row_pick':
normed_matrix_df = matrix_norm_by_pick(matrix_df, 'row')
champion_matrix = normed_matrix_df.as_matrix().astype(float)
elif norm == 'col_pick':
normed_matrix_df = matrix_norm_by_pick(matrix_df, 'col')
champion_matrix = normed_matrix_df.as_matrix().astype(float)
elif norm == 'counter_inci':
champion_matrix = matrix_norm_by_incidence(matrix_df, 'counter')
elif norm == 'partner_inci':
champion_matrix = matrix_norm_by_incidence(matrix_df, 'partner')
else:
raise ValueError('No such normalization method: {}'.format(norm))
return champion_matrix
def matrix_norm_by_pick(matrix_df, direction):
'''
norm by picks of row champion
'''
conn = sqlite3.connect('lola.db')
pick_ban_info = pd.read_sql("SELECT champion,picks,bans FROM ChampionMatchStats", conn, index_col=['champion'])
conn.close()
pick_infor_matrix_df = pick_ban_info['picks']
if direction == 'row':
normed_matrix_df = matrix_df.divide(pick_infor_matrix_df, axis='index') # no nan in normal cases
elif direction == 'col':
normed_matrix_df = matrix_df.divide(pick_infor_matrix_df, axis='columns')
return(normed_matrix_df)
def matrix_norm_by_incidence(matrix_df, relation):
'''
norm by incidence of counter/partner pairs
'''
matrix = matrix_df.as_matrix().astype(float)
inci_matrix = sqlite_to_incidence_matrix(relation).as_matrix().astype(float)
normed_matrix = np.divide(matrix, inci_matrix) # matrix divide matrix element-wise
normed_matrix = np.nan_to_num(normed_matrix) # fill nan with 0
return(normed_matrix)
''' TODO:devided matrix by version and avg_tier
def AM_table():
conn = sqlite3.connect('lola.db')
temp = conn.execute('SELECT DISTINCT(champion) FROM Participant')
c = [] # c[]: a list of 128 champions
cc = [] # permutation sized 127*127
for i in temp.fetchall():
c.append(i[0])
cc = permutations(c,2)
for i in range(len(version)):
for j in range(len(tier)):
#for k in cc:
for q in range(len(c)):
t = conn.execute("SELECT count(*) FROM FrameKillEvent WHERE version=? AND avg_tier=? AND killer=? AND assist=?",(version[i],tier[j],'Vayne',c[q]))#k[0],k[1]
conn.execute("INSERT INTO AM_Table VALUES(?,?,?,?,?)",(version[i],tier[j],'Vayne',c[q],t.fetchall()[0][0]))#k[0],k[1]
t = conn.execute("SELECT count(*) FROM FrameKillEvent WHERE version=? AND avg_tier=? AND killer=? AND assist=?",(version[i],tier[j],'Vayne',c[q]))#k[0],k[1]
print 'Hero:%s--%s Num:%d'%('Vayne',c[q],t.fetchall()[0][0]) #k[0],k[1]
print '$-----Table:AM_table Mission:Tier-%s [Finished].-----$' %tier[j]
print '$-----Table:AM_table Mission:Version-%s [Finished].-----$' %version[i]
conn.commit()
conn.close()
'''