-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathWfActionT.v
529 lines (489 loc) · 17.2 KB
/
WfActionT.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
Require Export Bool Ascii String Fin List FunctionalExtensionality Psatz PeanoNat.
Require Export Kami.Syntax.
Inductive Failure :=
| NativeReg : string -> Failure
| NativeLetExpr : Failure
| NativeReadNondet : Failure
| RegNotFound : string -> Failure
| HideMethodNotFound : string -> Failure
| RegKindMismatch : string -> FullKind -> FullKind -> Failure
| DuplicateMethod : string -> (* Signature -> Signature -> *) Failure
| DuplicateRegister : string -> FullKind -> FullKind -> Failure
| DuplicateRule : string -> Failure.
Fixpoint WfActionT_unit {k} (regs : list (string * {x : FullKind & RegInitValT x})) (a : ActionT (fun _ => unit) k) : list Failure :=
match a with
| MCall meth s e cont => WfActionT_unit regs (cont tt)
| LetExpr (SyntaxKind k'') e cont => WfActionT_unit regs (cont tt)
| LetExpr (NativeKind t c) e cont => NativeLetExpr :: WfActionT_unit regs (cont c)
| LetAction k a cont => WfActionT_unit regs a ++ WfActionT_unit regs (cont tt)
| ReadNondet (SyntaxKind k') cont => WfActionT_unit regs (cont tt)
| ReadNondet (NativeKind t c) cont => NativeReadNondet :: WfActionT_unit regs (cont c)
| ReadReg r (SyntaxKind k') cont =>
match lookup String.eqb r regs with
| Some (existT (SyntaxKind k'') _) => (if Kind_decb k' k'' then [] else [RegKindMismatch r (SyntaxKind k') (SyntaxKind k'')]) ++ WfActionT_unit regs (cont tt)
| Some (existT (NativeKind t c) _) => [RegKindMismatch r (SyntaxKind k') (NativeKind c)]
| None => [RegNotFound r]
end
| ReadReg r (NativeKind t c) cont => [NativeReg r]
| WriteReg r (SyntaxKind k') e cont =>
match lookup String.eqb r regs with
| Some (existT (SyntaxKind k'') _) => if Kind_decb k' k'' then WfActionT_unit regs cont else RegKindMismatch r (SyntaxKind k') (SyntaxKind k'') :: WfActionT_unit regs cont
| Some (existT (NativeKind t c) _) => [RegKindMismatch r (SyntaxKind k') (NativeKind c)]
| None => [RegNotFound r]
end
| WriteReg r (NativeKind t c) e cont => NativeReg r :: WfActionT_unit regs cont
| IfElse cond k' atrue afalse cont => WfActionT_unit regs atrue ++ WfActionT_unit regs afalse ++ WfActionT_unit regs (cont tt)
| Sys l cont => WfActionT_unit regs cont
| Return e => []
end.
Definition WfBaseModule_rules_unit(m : BaseModule) :=
List.fold_right (fun rule fs => WfActionT_unit (getRegisters m) rule ++ fs) [] (map (fun r => snd r _) (getRules m)).
Definition action_from_MethodT : (string * {x : Signature & MethodT x}) -> {k : _ & ActionT (fun _ => unit) k}.
Proof.
intros.
destruct X.
destruct s0.
unfold MethodT in m.
pose (m (fun _ => unit)).
exists (snd x).
exact (a tt).
Defined.
Definition WfBaseModule_methods_unit(m : BaseModule) :=
List.fold_right (fun meth fs => WfActionT_unit (getRegisters m) (projT2 (action_from_MethodT meth)) ++ fs) [] (getMethods m).
Fixpoint find_dups_aux{X}(acc ps : list (string * X)) : list (string * X * X) :=
match ps with
| [] => []
| p::qs => match lookup String.eqb (fst p) acc with
| Some x => (fst p, snd p, x) :: find_dups_aux acc qs
| None => find_dups_aux (p::acc) qs
end
end.
Definition find_dups{X} : list (string * X) -> list (string * X * X) := find_dups_aux [].
Definition WfBaseModule_unit(m : BaseModule) :=
map (fun '(s,x1,x2) => DuplicateMethod s (* (projT1 x1) (projT1 x2) *)) (find_dups (getMethods m))
++ map (fun '(s,x1,x2) => DuplicateRegister s (projT1 x1) (projT1 x2)) (find_dups (getRegisters m))
++ map (fun '(s,x1,x2) => DuplicateRule s) (find_dups (getRules m))
++ WfBaseModule_rules_unit m
++ WfBaseModule_methods_unit m.
Fixpoint find_overlaps{X}(ps qs : list (string * X)) : list (string * X * X) :=
match ps with
| [] => []
| p::ps' => match lookup String.eqb (fst p) qs with
| Some x => (fst p,snd p,x) :: find_overlaps ps' qs
| None => find_overlaps ps' qs
end
end.
Fixpoint WfConcatActionT_unit{k}(a : ActionT (fun _ => unit) k)(m : Mod) : list Failure :=
match a with
| MCall meth s e cont => (if existsb (String.eqb meth) (getHidden m) then [HideMethodNotFound meth] else []) ++ WfConcatActionT_unit (cont tt) m
| LetExpr (SyntaxKind k') e cont => WfConcatActionT_unit (cont tt) m
| LetExpr (NativeKind t c) e cont => NativeLetExpr :: WfConcatActionT_unit (cont c) m
| LetAction k a cont => WfConcatActionT_unit a m ++ WfConcatActionT_unit (cont tt) m
| ReadNondet (SyntaxKind k') cont => WfConcatActionT_unit (cont tt) m
| ReadNondet (NativeKind t c) cont => NativeReadNondet :: WfConcatActionT_unit (cont c) m
| ReadReg r (SyntaxKind k') cont => WfConcatActionT_unit (cont tt) m
| ReadReg r (NativeKind t c) cont => NativeReg r :: WfConcatActionT_unit (cont c) m
| WriteReg r k e a => WfConcatActionT_unit a m
| IfElse e k a1 a2 cont => WfConcatActionT_unit a1 m ++ WfConcatActionT_unit a2 m ++ WfConcatActionT_unit (cont tt) m
| Sys _ a => WfConcatActionT_unit a m
| Return _ => []
end.
Definition WfConcat_unit m1 m2 :=
List.fold_right (fun rule fs => WfConcatActionT_unit rule m2 ++ fs) [] (map (fun r => snd r _) (getAllRules m1))
++ List.fold_right (fun meth fs => WfConcatActionT_unit (projT2 meth) m2 ++ fs) [] (map action_from_MethodT (getAllMethods m1)).
Fixpoint WfMod_unit(m : Mod) :=
match m with
| Base m => WfBaseModule_unit m
| HideMeth m s => match lookup String.eqb s (getAllMethods m) with
| Some _ => WfMod_unit m
| None => HideMethodNotFound s :: WfMod_unit m
end
| ConcatMod m1 m2 =>
WfMod_unit m1
++ WfMod_unit m2
++ map (fun '(s,x1,x2) => DuplicateRegister s (projT1 x1) (projT1 x2)) (find_overlaps (getAllRegisters m1) (getAllRegisters m2))
++ map (fun '(s,x1,x2) => DuplicateRule s) (find_overlaps (getAllRules m1) (getAllRules m2))
++ map (fun '(s,x1,x2) => DuplicateMethod s (* (projT1 x1) (projT1 x2) *)) (find_overlaps (getAllMethods m1) (getAllMethods m2))
++ WfConcat_unit m1 m2
++ WfConcat_unit m2 m1
end.
Section Proofs.
Lemma In_map_fst : forall {X Y}(x : X) ps, In x (map fst ps) -> exists y : Y, In (x,y) ps.
Proof.
induction ps; intros.
- destruct H.
- destruct H.
exists (snd a).
left.
destruct a.
simpl in *; congruence.
destruct (IHps H) as [y Hy].
exists y.
right; exact Hy.
Qed.
Lemma In_lookup : forall {X} str (ps : list (string * X)), In str (map fst ps) -> exists x, lookup String.eqb str ps = Some x.
Proof.
induction ps; intros.
- destruct H.
- destruct H.
+ exists (snd a).
unfold lookup.
simpl.
rewrite H.
rewrite String.eqb_refl.
reflexivity.
+ destruct a.
rewrite lookup_cons.
destruct String.eqb eqn:G.
* exists x; auto.
* auto.
Qed.
Lemma lookup_In : forall {X} str (ps : list (string * X)) x, lookup String.eqb str ps = Some x -> In str (map fst ps).
Proof.
induction ps.
- intros; discriminate.
- intros.
destruct a.
rewrite lookup_cons in H.
destruct String.eqb eqn:G.
+ left.
rewrite String.eqb_eq in G; simpl; congruence.
+ right.
apply (IHps x); auto.
Qed.
Lemma find_dups_aux_NoDup : forall {X}(ps acc : list (string * X)), find_dups_aux acc ps = [] -> NoDup (map fst ps) /\ forall str, In str (map fst ps) -> ~ In str (map fst acc).
Proof.
induction ps; intros.
- split.
+ constructor.
+ intros.
destruct H0.
- split.
+ simpl in H.
destruct lookup eqn:G in H.
* discriminate.
* destruct (IHps _ H).
constructor.
** intro.
apply (H1 (fst a)).
exact H2.
left; auto.
** exact H0.
+ simpl in H.
destruct lookup eqn:G in H.
* discriminate.
* intros.
destruct (IHps _ H).
intro.
destruct H0.
** destruct (In_lookup str acc H3) as [x Hx].
rewrite H0 in G.
rewrite Hx in G.
discriminate.
** apply (H2 str); auto.
right; auto.
Qed.
Lemma find_dups_NoDups : forall {X}(ps : list (string * X)), find_dups ps = [] -> NoDup (map fst ps).
Proof.
intros.
eapply find_dups_aux_NoDup.
exact H.
Qed.
Lemma WfActionT_unit_correct : forall lret m (a : ActionT _ lret), WfActionT_unit (getRegisters m) a = [] -> WfActionT_new (getRegisters m) a.
Proof.
induction a; simpl; intros.
- apply H; destruct x; auto.
- apply H.
destruct k.
+ destruct x; auto.
+ discriminate H0.
- split.
+ apply IHa.
destruct (app_eq_nil _ _ H0); auto.
+ intro; apply H.
destruct (app_eq_nil _ _ H0); destruct x; auto.
- apply H.
destruct k.
+ destruct x; auto.
+ discriminate.
- destruct k.
+ destruct lookup eqn:G.
* destruct s.
destruct x.
** destruct Kind_decb eqn:G0.
*** split.
**** rewrite Kind_decb_eq in G0; congruence.
**** intros []; apply H; auto.
*** discriminate.
** discriminate.
* discriminate.
+ discriminate.
- destruct k.
+ destruct lookup eqn:G.
* destruct s.
destruct x.
** destruct Kind_decb eqn:G0.
*** split.
**** rewrite Kind_decb_eq in G0; congruence.
**** auto.
*** discriminate.
** discriminate.
* discriminate.
+ discriminate.
- destruct (app_eq_nil _ _ H0); clear H0.
destruct (app_eq_nil _ _ H2); clear H2.
repeat split; auto.
intros []; auto.
- auto.
- exact I.
Qed.
Lemma fold_right_empty_lemma : forall {X Y}(f : X -> list Y)(xs : list X),
fold_right (fun x ys => f x ++ ys) [] xs = [] -> forall x, In x xs -> f x = [].
Proof.
induction xs; intros.
- destruct H0.
- simpl in H.
destruct (app_eq_nil _ _ H).
destruct H0.
+ congruence.
+ auto.
Qed.
Lemma WfBaseModule_rules_unit_In : forall m, WfBaseModule_rules_unit m = [] -> forall rule, In rule (getRules m) -> WfActionT_unit (getRegisters m) (snd rule _) = [].
Proof.
intros.
apply (fold_right_empty_lemma _ _ H).
apply (@in_map _ _ (fun r : string * (forall x : Kind -> Type, ActionT x Void) => snd r (fun _ => unit))); auto.
Qed.
Lemma WfBaseModule_rules_unit_correct : forall m, WfBaseModule_rules_unit m = [] -> forall rule, In rule (getRules m) ->
WfActionT_new (getRegisters m) (snd rule (fun _ => unit)).
Proof.
intros.
apply WfActionT_unit_correct.
apply WfBaseModule_rules_unit_In; auto.
Qed.
Lemma In_WfRules : forall ty regs rules, (forall rule, In rule rules -> WfActionT_new regs (snd rule ty)) -> WfRules ty regs rules.
Proof.
induction rules; intros; simpl.
- exact I.
- split.
+ apply H.
left; auto.
+ apply IHrules.
intros.
apply H.
right; auto.
Qed.
Lemma WfBaseModule_methods_unit_In : forall m, WfBaseModule_methods_unit m = [] -> forall meth, In meth (getMethods m) -> WfActionT_unit (getRegisters m) (projT2 (snd meth) _ tt) = [].
Proof.
intros.
unfold WfBaseModule_methods_unit in H.
pose @fold_right_empty_lemma.
pose (@fold_right_empty_lemma _ _ _ _ H).
unfold action_from_MethodT in e0.
pose (e0 meth).
destruct meth.
destruct s0.
simpl in e1.
apply e1.
exact H0.
Qed.
Lemma WfBaseModule_methods_unit_correct : forall m, WfBaseModule_methods_unit m = [] -> forall meth, In meth (getMethods m) ->
WfActionT_new (getRegisters m) (projT2 (snd meth) (fun _ => unit) tt).
Proof.
intros.
apply WfActionT_unit_correct.
apply WfBaseModule_methods_unit_In; auto.
Qed.
Lemma In_WfMethods : forall ty regs meths, (forall (meth : string * {x : Signature & MethodT x}) v, In meth meths -> @WfActionT_new ty regs _ (projT2 (snd meth) _ v)) -> WfMeths ty regs meths.
Proof.
induction meths; intros; simpl.
- exact I.
- split.
+ intro; apply H.
left; auto.
+ apply IHmeths.
intros.
apply H.
right; auto.
Qed.
Lemma WfBaseModule_unit_correct : forall m, WfBaseModule_unit m = [] -> WfBaseModule_new (fun _ => unit) m.
Proof.
unfold WfBaseModule_unit, WfBaseModule_new.
intros.
destruct (app_eq_nil _ _ H); clear H.
destruct (app_eq_nil _ _ H1); clear H1.
destruct (app_eq_nil _ _ H2); clear H2.
destruct (app_eq_nil _ _ H3); clear H3.
repeat split.
- apply In_WfRules.
intros.
apply WfBaseModule_rules_unit_correct; auto.
- apply In_WfMethods.
intros meth [].
apply WfBaseModule_methods_unit_correct; auto.
- apply find_dups_NoDups.
eapply map_eq_nil.
exact H0.
- apply find_dups_NoDups.
eapply map_eq_nil.
exact H.
- apply find_dups_NoDups.
eapply map_eq_nil.
exact H1.
Qed.
Lemma find_overlaps_DisjKey : forall {X}(ps qs : list (string * X)), find_overlaps ps qs = [] -> DisjKey ps qs.
Proof.
induction ps; intros qs Hoverlaps str.
- left; simpl; auto.
- simpl in Hoverlaps.
destruct lookup eqn:G.
+ discriminate.
+ destruct (IHps qs Hoverlaps str).
* destruct (fst a =? str) eqn:G0.
** right.
intro.
destruct (In_lookup _ _ H0).
rewrite String.eqb_eq in G0.
rewrite G0 in G.
rewrite H1 in G.
discriminate.
** left.
intros [|].
*** rewrite H0 in G0.
rewrite String.eqb_refl in G0.
discriminate.
*** auto.
* tauto.
Qed.
Lemma WfConcatActionT_unit_correct : forall {lret} m (a : ActionT (fun _ => unit) lret),
WfConcatActionT_unit a m = [] -> WfConcatActionT_new a m.
Proof.
induction a; simpl; intros.
- split.
+ destruct existsb eqn:G.
* discriminate.
* Search existsb In.
intro.
assert (existsb (String.eqb meth) (getHidden m) = true).
** apply existsb_exists.
exists meth; split.
*** auto.
*** apply String.eqb_refl.
** rewrite H2 in G; discriminate.
+ destruct x.
apply H.
destruct (app_eq_nil _ _ H0); auto.
- destruct k.
+ destruct x; auto.
+ discriminate.
- destruct (app_eq_nil _ _ H0); clear H0.
split.
+ auto.
+ destruct x; auto.
- destruct k.
+ destruct x; auto.
+ discriminate.
- destruct k.
+ destruct x; auto.
+ discriminate.
- auto.
- destruct (app_eq_nil _ _ H0); clear H0.
destruct (app_eq_nil _ _ H2); clear H2.
repeat split.
+ auto.
+ auto.
+ destruct x; auto.
- auto.
- exact I.
Qed.
Lemma in_map2 : forall (A B : Type)(f : A -> B)(l : list A)(x : A)(y : B), y = f x -> In x l -> In y (map f l).
Proof.
intros.
rewrite H.
apply in_map; auto.
Qed.
Theorem WfMod_unit_correct : forall m, WfMod_unit m = [] -> WfMod_new (fun _ => unit) m.
Proof.
induction m; simpl; intro.
- apply WfBaseModule_unit_correct; auto.
- destruct lookup eqn:G in H.
+ split.
* eapply lookup_In.
exact G.
* auto.
+ discriminate.
- destruct (app_eq_nil _ _ H); clear H.
destruct (app_eq_nil _ _ H1); clear H1.
destruct (app_eq_nil _ _ H2); clear H2.
destruct (app_eq_nil _ _ H3); clear H3.
destruct (app_eq_nil _ _ H4); clear H4.
destruct (app_eq_nil _ _ H5); clear H5.
destruct (app_eq_nil _ _ H4); clear H4.
destruct (app_eq_nil _ _ H6); clear H6.
repeat split.
+ apply find_overlaps_DisjKey.
eapply map_eq_nil.
exact H1.
+ apply find_overlaps_DisjKey.
eapply map_eq_nil.
exact H2.
+ apply find_overlaps_DisjKey.
eapply map_eq_nil.
exact H3.
+ auto.
+ auto.
+ intros; apply WfConcatActionT_unit_correct.
apply (@fold_right_empty_lemma _ _ _ _ H5).
apply (@in_map _ _ (fun r : string * (forall x : Kind -> Type, ActionT x Void) => snd r (fun _ => unit))); auto.
+ intros; apply WfConcatActionT_unit_correct.
unfold action_from_MethodT in H7.
destruct v.
pose (@fold_right_empty_lemma _ _ _ _ H7).
pose (e (action_from_MethodT meth)).
destruct meth.
destruct s0.
simpl.
unfold action_from_MethodT in e0.
simpl in e0.
apply e0.
apply (@in_map2 _ _ _ _ ((s, existT MethodT x m))).
reflexivity.
exact H6.
+ intros; apply WfConcatActionT_unit_correct.
apply (@fold_right_empty_lemma _ _ _ _ H4).
apply (@in_map _ _ (fun r : string * (forall x : Kind -> Type, ActionT x Void) => snd r (fun _ => unit))); auto.
+ intros; apply WfConcatActionT_unit_correct.
unfold action_from_MethodT in H8.
destruct v.
pose (@fold_right_empty_lemma _ _ _ _ H8).
pose (e (action_from_MethodT meth)).
destruct meth.
destruct s0.
simpl.
unfold action_from_MethodT in e0.
simpl in e0.
apply e0.
apply (@in_map2 _ _ _ _ ((s, existT MethodT x m))).
reflexivity.
exact H6.
Qed.
End Proofs.
Section ParametricTheorems.
Lemma WfActionT_unit_new : forall {k}(regs : list RegInitT)(a : forall ty, ActionT ty k), WfActionT_unit regs (a _) = [] ->
forall ty, WfActionT_new regs (a ty).
Proof.
Admitted.
Lemma WfBaseModule_unit_new : forall b : BaseModule, WfBaseModule_unit b = [] -> forall ty, WfBaseModule_new ty b.
Proof.
Admitted.
Lemma WfConcatActionT_unit_new : forall {k}(a : forall ty, ActionT ty k)(m : Mod),
WfConcatActionT_unit (a _) m = [] -> forall ty, WfConcatActionT_new (a ty) m.
Proof.
Admitted.
Lemma WfConcat_unit_new : forall m1 m2, WfConcat_unit m1 m2 = [] -> forall ty, WfConcat_new ty m1 m2.
Proof.
Admitted.
Lemma WfMod_unit_new : forall m, WfMod_unit m = [] -> forall ty, WfMod_new ty m.
Proof.
Admitted.
End ParametricTheorems.