-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_unet.py
88 lines (79 loc) · 5 KB
/
model_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv2D, LeakyReLU, MaxPooling2D, Dropout, concatenate, UpSampling2D
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import backend
import tensorflow as tf
print(tf.__version__)
#Unet network
def unet(pretrained_weights = None,input_size = (128,128,1)):
#size filter input
size_filter_in = 16
#normal initialization of weights
kernel_init = 'he_normal'
#To apply leaky relu after the conv layer
activation_layer = None
inputs = Input(input_size)
conv1 = Conv2D(size_filter_in, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(inputs)
conv1 = LeakyReLU()(conv1)
conv1 = Conv2D(size_filter_in, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(conv1)
conv1 = LeakyReLU()(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(size_filter_in*2, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(pool1)
conv2 = LeakyReLU()(conv2)
conv2 = Conv2D(size_filter_in*2, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(conv2)
conv2 = LeakyReLU()(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(size_filter_in*4, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(pool2)
conv3 = LeakyReLU()(conv3)
conv3 = Conv2D(size_filter_in*4, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(conv3)
conv3 = LeakyReLU()(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(size_filter_in*8, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(pool3)
conv4 = LeakyReLU()(conv4)
conv4 = Conv2D(size_filter_in*8, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(conv4)
conv4 = LeakyReLU()(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(size_filter_in*16, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(pool4)
conv5 = LeakyReLU()(conv5)
conv5 = Conv2D(size_filter_in*16, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(conv5)
conv5 = LeakyReLU()(conv5)
drop5 = Dropout(0.5)(conv5)
up6 = Conv2D(size_filter_in*8, 2, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(UpSampling2D(size = (2,2))(drop5))
up6 = LeakyReLU()(up6)
merge6 = concatenate([drop4,up6], axis = 3)
conv6 = Conv2D(size_filter_in*8, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(merge6)
conv6 = LeakyReLU()(conv6)
conv6 = Conv2D(size_filter_in*8, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(conv6)
conv6 = LeakyReLU()(conv6)
up7 = Conv2D(size_filter_in*4, 2, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(UpSampling2D(size = (2,2))(conv6))
up7 = LeakyReLU()(up7)
merge7 = concatenate([conv3,up7], axis = 3)
conv7 = Conv2D(size_filter_in*4, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(merge7)
conv7 = LeakyReLU()(conv7)
conv7 = Conv2D(size_filter_in*4, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(conv7)
conv7 = LeakyReLU()(conv7)
up8 = Conv2D(size_filter_in*2, 2, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(UpSampling2D(size = (2,2))(conv7))
up8 = LeakyReLU()(up8)
merge8 = concatenate([conv2,up8], axis = 3)
conv8 = Conv2D(size_filter_in*2, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(merge8)
conv8 = LeakyReLU()(conv8)
conv8 = Conv2D(size_filter_in*2, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(conv8)
conv8 = LeakyReLU()(conv8)
up9 = Conv2D(size_filter_in, 2, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(UpSampling2D(size = (2,2))(conv8))
up9 = LeakyReLU()(up9)
merge9 = concatenate([conv1,up9], axis = 3)
conv9 = Conv2D(size_filter_in, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(merge9)
conv9 = LeakyReLU()(conv9)
conv9 = Conv2D(size_filter_in, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(conv9)
conv9 = LeakyReLU()(conv9)
conv9 = Conv2D(2, 3, activation = activation_layer, padding = 'same', kernel_initializer = kernel_init)(conv9)
conv9 = LeakyReLU()(conv9)
conv10 = Conv2D(1, 1, activation = 'tanh')(conv9)
model = Model(inputs,conv10)
model.compile(optimizer = 'adam', loss = tf.keras.losses.Huber(), metrics = ['mae'])
#model.summary()
if(pretrained_weights):
model.load_weights(pretrained_weights)
return model